Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усилители Параметры

В зависимости от характера принимаемого сигнала применяются различные варианты схем регистрации лучистых потоков. При приеме непрерывных излучений используются усилители постоянного тока, причем при регистрации очень малых потоков применяют электрометрический режим первого каскада усилителя или специальные электрометрические приборы (лампы, униполярные транзисторы и др.). При приеме излучений, модулированных низкой частотой, используются усилители с узкой полосой пропускания, а при регистрации импульсных потоков — широкополосные и импульсные усилители. Параметры и характеристики ФЭУ различны для разных схем регистрации, поэтому различают и отдельно измеряют статические и импульсные параметры.  [c.204]


В рассматриваемых замкнутых системах регулирования с применением различного рода усилителей и обратных связей заполнение токовой диаграммы зависит от характеристик усилителей, параметров обратных стабилизирующих связей и способов их введения, параметров привода и режимов работы ножниц.  [c.122]

Для электронного усилителя выходные параметры — полоса пропускания, коэффициент усиления на средних частотах, входное сопротивление, мощность рассеяния  [c.22]

Выходные параметры пли фазовые переменные, фигурирующие в модели одной из подсистем (в одном из аспектов описания), часто оказываются внешними параметрами в описаниях других подсистем (других аспектов). Так, максимальные температуры корпусов электронных приборов в электрических моделях усилителя относятся к внешним параметрам, а в тепловых моделях того же объекта — к выходным параметрам.  [c.23]

Для наблюдения периодических и разовых быстропротекающих процессов используют электроннолучевые осциллографы. Осциллографы могут быть рассчитаны на наблюдение одного процесса (однолучевые), двух процессов (двухлучевые) и более. Примерами однолучевых осциллографов могут служить осциллографы С1-19Б — низкочастотный осциллограф, работающий в диапазоне частот 0—1 МГц, имеющий два усилителя, чувствительность 2 мВ/см, входное сопротивление 10 МОм и входную емкость 12 пФ С1-48Б — полупроводниковый малогабаритный осциллограф с аналогичными параметрами. Двухлучевой осциллограф С1-18 работает в диапазоне 0—1 МГц, чувствительность его 1 мВ/см, входное сопротивление 0,5 МОм, входная емкость 50 пФ С1-55—полупроводниковый осциллограф для диапазона 0—10 МГц с чувствительностью 10 мВ на деление, входным сопротивлением 1 МОм и входной емкостью 40 пФ. Отдельные осциллографы имеют трубки с длительным послесвечением, позволяющим наблюдать кривые процессов, протекающих в течение наносекунд.  [c.171]

Параметрические диоды (ПД1 отличаются исключительно малой инерционностью дисперсия в них отсутствует до частот порядка 10 Гц. При расчетах параметрических усилителей (генераторов) параметрический диод заменяется эквивалентной схемой, показанной на рис. 4.13 и справедливой для большинства типов ПД в любых рабочих диапазонах частот, включая СВЧ. Здесь через Я обозначено сопротивление потерь, —емкость монтажного патрона, — паразитная индуктивность вводов. В диапазоне СВЧ типовые параметры ПД следующие Сд от 1 до 0,1 пФ, Я от 10 до 1 Ом, = 0,1 нГн, С от 1 до 0,5 пФ (вторые значения относятся к ПД высокого качества).  [c.153]


Для усиления подобных сигналов (видеосигналов) необходимо использовать другую разновидность параметрического усилителя. Принцип действия параметрического усилителя видеосигналов (ПУВ) основан на возможности модуляции с частотой сигнала реактивного параметра колебательного контура, в котором существуют колебания, задаваемые внешним генератором. Рассмотрим работу параметрического усилителя видеосигналов на примере ПУВ с магнитным (ферритовым) сердечником в катушке индуктивности параллельного колебательного контура.  [c.154]

В САР, построенных по замкнутому циклу, имеется два канала канал передачи сигналов управления и канал обратной связи. По последнему передается информация о фактических значениях контролируемой величины на объекте регулирования. На рис. 28.2 приведен пример схемы САР. Двигатель — Дв через редуктор — Р приводит в движение программное устройство — ЛУ, задающее определенные значения регулируемого параметра. Возмущающее воздействие — ВВ изменяет состояние объекта регулирования — ОР, которое характеризуется выходным сигналом Х . Чувствительный элемент — ЧЭ преобразует сигнал и подает на сравнивающее устройство — СУ фактическое значение Х регулируемого параметра. Сигнал, зависящий от разности Ха = = Х — - 0 подается на усилитель — У и как управляющий сигнал—Х4 преобразуется посредством двигателя Дв, редуктора — Р и исполнительного устройства — ИУ в регулирующее воздействие Xj для обеспечения задаваемого значения Xq на ОР. И — источник энергии. Обратная связь осуществляется через ЧЭ и СУ.  [c.396]

Несмотря на многообразие этих приборов большинство из них состоит из чувствительного элемента, преобразователя движения чувствительного элемента (датчика) в удобный для измерения параметр, усилителя преобразованного сигнала от датчика (в механических приборах это множительный зубчатый или шарнирно-рычажный механизм, в электромеханических — электронный усилитель ит. д.) и измерительного устройства (отсчетного или регистрирующего).  [c.354]

Принцип работы. Чувствительным элементом приборов для измерения колебаний и вибраций обычно является подвижная достаточно большая масса 2 (рис. 3.117), связанная с корпусом прибора / упругим элементом 3 малой жесткости. Корпус прибора устанавливают на исследуемый объект. При колебании объекта корпус прибора будет совершать вынужденные колебания с теми же параметрами, что и исследуемый объект. В то же время, благодаря упругой подвеске, большая масса 2 будет практически неподвижна. Поэтому, если с ней связать указатель отсчетного устройства 4, а на корпусе прибора нанести шкалу, при колебании объекта отсчетное устройство будет показывать амплитуду колебаний. Если амплитуда измеряемых колебаний невелика и отсчет затруднен, то между чувствительным элементом и измерительным устройством вводят преобразователь и усилитель.  [c.354]

Устройство регистрации параметров ЭДС магнитного шума состоит из предусилителя, регулируемого усилителя, детектора, интегратора, блока управления.  [c.79]

В отличие от стационарных сооружений на судах находят наиболее широкое применение защитные установки с регулированием потенциала вместо управляемых вручную, поскольку требуемый защитный ток колеблется в зависимости от окружающей среды и рабочего состояния судна. Более подробные данные о преобразователях систем катодной защиты имеются в разделе 9. Защитные установки для судов должны быть особо прочными и стойкими против воздействия вибраций. Регулирование осуществляется при помощи магнитных усилителей, установочных трансформаторов с серводвигателем или по методу отсечки фазы с применением тиристоров. В отличие от защитных установок для трубопроводов защитные установки для судов могут иметь очень большую постоянную времени регулирования, поскольку требуемый защитный ток изменяется очень медленно. Защитные установки имеют в своем составе также приборы для измерения тока и потенциала на отдельных анодах с наложением тока и измерительные электроды. На крупных защитных установках ван нейшие параметры, кроме того, записываются.  [c.364]


Наряду с измерением эффективного корректированного значения вибрационного параметра приборы группы 1 позволяют выполнить частотный анализ сигнала. В режиме работы с внешними фильтрами (рис. 1) сигнал с выхода блока усилителей Vj подается на вход внешнего фильтра, а с выхода внешнего фильтра на вход усилителя Fj- Далее сигнал, соответствующий определенной полосе частот, установленной на фильтре, регистрируется обычным путем от усилителя Уа до индикатора /. Блок-схема, приведенная на рис. 1 без блоков SFW и счетчика DAT, соответствует требованиям ГОСТ 12.4.012—83 к приборам группы 1.  [c.27]

Внутренние параметры (параметры элементов) в моделях й-го иерархического уровня становятся выходными параметрами в моделях более низкого (й-Ы)-го иерархического уровня. Так, в рассмотренном выше примере (см. с. 22) для электронного усилителя параметры транзистора являются внутрспиими при проектировании усилителя и в то же время выходными при проектировании самого транзистора.  [c.23]

Используя формулы (8.54) и (8.55), можно оценить относительное влияние тех или иных параметров измерительной установки на величину полезного сигнала. Так, например, для повьппения чувствительности фотоэлектрических измерений часто используется уменьп1ение Д/ (частотная полоса пропускания), приводящее к уменьшению флуктуаций, возникающих как из-за дробового эффекта, так и теплового движения электронов. В усилителях постоянного тока это достигается увеличением произведения ВС (С — емкость конденсатора) и неизбежно приводит к увеличению времени регистрации (записи) сигнала, что не всегда желательно.  [c.441]

Для непосредственного измерения i можно ввести в день фотоэлемента какой-нибудь прибор, измеряюш,ий силу тока. Обычно в качестве такого прибора используют второй гальванометр. При удачной конструкции усилителя, обеспечении хороших контактов, сведении к минимуму вибраций и т. д. удается, используя два простых кембриджских гальванометра с внутренним сопротивлением 500 ом, работать с сопротивлением/ = 20 ом, а при благоприятных условиях с еще меньшим сопротивлением. При этом достигается увеличение чувствительности по напряжению примерно в 25 раз по сравнению с собственной чувствительностью гальванометра этого типа. Иными словами, если гальванометр без усилителя имеет чувствительность примерно 2 мм мкв при расстоянии от зеркала до шкалы 1 м, то при использовании описаиной схемы с двумя такими же гальванометрами чувствительность достигает 5 см1мкв. Действие сильной отрицательной обратной связи выражается в том, что свойства системы становятся почти не зависящими от параметров гальванометра и фотоэлементов. Это избавляет нас от необходимости заботиться о линейности первичного гальванометра и фототока [см. (10.1)].  [c.177]

Д,остоинство подобных параметрических усилителей состоит в том, что они позволяют усиливать сигналы, внося в тракт усиления лишь небольшие собственные шумы. Типичным параметрическим усилителем является охлаждаемый до низких температур колебательный контур, в котором реактивный параметр, например емкость конденсатора, периодически меняется во времени. Уровень тепловых шумов в такой системе можно сделать минимальным.  [c.151]

Усилитель с высокочастотной накачкой. Двухконтурный параметрический усилитель, для которого справедливо соотношение (Ов = о + СО,,, является регенеративным усилителем, т. е. системой, в которой под действием напряжения накачки в оба контура вносится отрицательное сопротивление, зависящее от напряжения накачки. Это напряжение определяет глубину модуляции параметра. Как следует из соотношений (7.1.11) и (7.1.12), по мере увеличения амплитуда колебаний в первом и втором контурах увеличивается. При Лй = 1/а 1 2 1 2 амплитуда колебаний в контурах нарастает до бесконечности, что свидетельствует о равенстве вносимых отрицательных сопротивлений активным потерям в контурах. При этом значении амплитуды накачки двухконтурный параметрический усилитель с высокочастотной накачкой самовозбуждается и превращается в параметрический генератор.  [c.259]

ЭТОМ охранный электрод образца соединяется с заземленным экраном, а высоковольтный — с указанной вершиной (рис. 3-2). В два другие плеча включаТотся переменный резистор R3 и постоянный резистор R4, шунтированный конденсатором переменной емкости С4. В такой схеме вее напряжение практически приходится на емкостные плечи, так как их сопротивление переменному току 1/(ц)С) много больше сопротивлений резисторов, включенных в другие плечи. Поэтому, несмотря на наличие высокого напряжения, можно безопасно уравновешивать мост изменением параметров R3 и С4. Для защиты цепи в случае пробоя образца предусмотрены разрядники. Индикатором равновесия моста обычно служит вибрационный гальванометр (см. ниже), зачастую включенный через усилитель.  [c.51]

Экспериментальная установка (рис. 9.3). В установку поступает водяной пар при давлении 0,4—0,й МПа. Перед поступлением в установку пар перегревается до температуры примерно 250 °С при помощи электрических нагревателей, установленных на трубе, подводящей пар. Перегретый водяной пар поступает в измерительную камеру 2, где измеряются его параметры (давление р и температура 1 ) на входе в сопло 3. Для измерения давлепня используется преобразователь давления 8 типа МС-Э2, усилитель типа УП-20 и ци<р-  [c.229]

Объект автоматизации с регулятором называют с и ст е м о й автоматического регулирования (САР). Принципиальная схема САР показана на рис 10-9. Величина регулируемого параметра измеряется с помощью чувствительного элемента и сравнивается с заданным значением, идущим от задатчика в виде управляющего воздействия. При отклонении регулируемой величины от заданного значения появляется сигнал рассогласования. На выходе регулятора вырабатывается сигнал, определяющий воздействие на объект через регулирующий орган и направленный на уменьшение рассогласования. Регулятор будет воздействовать до тех пор, пока регулируемый параметр не сравняется с заданным значением—постоянным или зависящим от нагрузки. Отклонение регулируемой величины от заданной может быть вызвано управляющим воздействием или нарушениями режима работы объекта— возмущениями, источники которых могут быть внутренними и ваешними. Регулятор непосредственного или прямого действия включает в себя чувствительный элемент, который развивает усилия, достаточные для воздействия на исполнительный механизм. Если же усилий чувствительного элемента для перемещения регулирующего органа недостаточно, то применяют регулятор косвенного действия с усилителем, получающим энергию извне от постороннего источника. Здесь чувстви-  [c.412]


Принцип действия. Измерительное устройство состоит из датчика / (рис. 4.102), преобразующего измеряемый параметр в линейное или угловое перемещение, преобразователя 2, приводящего поступательное перемещение датчика в перемещение, удобное для отсчета, усилителя 3, увеличивающего перемещения датчика, устройства 4, по которому ведется отсчет или регистрация, и момент-ной пружины 5, предназначенной для компенсации мертвого хода и возвращения подвижных частей измерительных устройств в исходное положение. Датчики и мо-ментные пружины представляют собой упругие элементы (см. гл.  [c.505]

Типичные значения параметров систем с внешним и внутренним входными экранами можно представить характеристиками усилителя радиационного изображения Вега-320> и усилителей ZOX, приведенными в табл. 8, 9, и основными техническими характеристиками рентгеновиди-  [c.363]

Приборы для контроля физико-механических свойств материала деталей, действие которых основано на измерении магнитной проницаемости, пока не нашли широкого применения в промышленности, хотя в ряде случаев они более удобны, чем коэрцити-метры, проще в автоматизации и иногда дают более четкие корреляционные зависимости между магнитными и другими физическими характеристиками, В измерительной технике применяют два основных способа измерения магнитной проницаемости логометрический и индукционный. Первый из них основан на принципе действия логометров, измеряющих отношение значений двух параметров, например индукции и напряженности намагничивающего поля. В данном случае необходимо, чтобы ток в одной обмотке логометра был пропорционален индукции, во второй — напряженности намагничивающего поля. Ло-гометр включается по схеме вольтметра-амперметра и, если необходимо, через усилители мощности.  [c.75]

Результаты эксперимента регистрируются с помощью каналов измерения усилия и деформации, тензометричес-кого усилителя УТ-4-1 в виде диаграмм на двухкоординатном записывающем приборе ПДС-021. Тарировка системы производится эталонными динамометрами и индикаторами по величине каждого параметра самостоятельно. Тщательно выполненные статические измерения с предварительной тарировкой позволяют определять усилия и деформации с точностью 1,5%.  [c.82]

Сигнал усиливается с помощью двукаскадиого дифференциального усилителя (ДУ). Недостатком этого устройства является необходимость использования инерционного звена— фиксирующих конденсаторов, которые снижают быстродействие системы. Уравновешивание выполняется лишь по одному параметру, так как применена резистивная мостовая схема.  [c.92]

Разработка и исследование макетов приборов контроля и регулирования способствовали выработке технических требований на все основные блоки электрической ветви АУС, которые приняты в Государственной системе приборов (ГСП). В соответствии с этими требованиями были разработаны схемы и конструкции основных модификаций малогабаритных ноказываюш их приборов, электрических регуляторов и электронных усилителей, а также бесконтактных исполнительных устройств, которые серийно производятся с 1958 г. и широко используются в различных отраслях промышленности для регулирования температуры, уровня, давления, расхода, соотношения параметров, а также в следящих системах [47].  [c.258]

Появление спутниковой, тропосферной, космической связи и глобального радио- и телевещания на сверхвысоких частотах, сверхдальней радиолокации, радиоастрономии, радиосиектросконии потребовало создания радиоприемных устройств с ничтожно малым уровнем шума. Новые возможности в этом отношении открылись перед радиотехникой в связи с достижениями в области изучения свойств различных веществ при глубоком их охлаждении и в связи с освоением новых методов построения радиоприемных схем. В результате этого в 50-х годах появились идеи создания параметрических и квантовых парамагнитных усилителей. Такие схемы обычно охлаждают с помощью жидкого азота, а в последнее время — жидкого гелия. Современные параметрические усилительные схемы осуществляются на основе использования для изменения параметров схемы диодов, ферритов, полупроводников и других нелинейных элементов. Квантовые парамагнитные усилители в настоящее время строятся на двух нринцинах. В первом из них взаимодействие волны слабого сигнала с усиливающим парамагнитным веществом происходит в объемном резонаторе (усилители резонаторпого тина), а во втором — в замедляющих волноводах (усилители бегущей волны). Все эти устройства мало похожи на привычные радиоприемники и пока еще достаточно сложны в осуществлении и эксплуатации, но зато их чувствительность может быть доведена до 10 вт.  [c.380]

К первой относятся сверхвысокочастотные ферриты. Они нашли применение в радиолокации, радионавигации, радиорелейных линиях связи, где они служат для защиты генераторов и усилителей от вредного воздействия отраженного от нагрузки сигнала, быстрого переключения волноводных трактов, управления диаграммами направленного действия антенн, осуш,е-ствления поворота плоскости поляризации, выполнения функции меняю-ш егося параметра в параметрических усилителях и т. д.  [c.383]


Смотреть страницы где упоминается термин Усилители Параметры : [c.104]    [c.118]    [c.123]    [c.18]    [c.197]    [c.303]    [c.160]    [c.203]    [c.168]    [c.142]    [c.158]    [c.153]    [c.233]    [c.260]    [c.135]    [c.138]    [c.303]    [c.59]    [c.93]    [c.154]    [c.266]    [c.34]   
Справочник металлиста Том5 Изд3 (1978) -- [ c.168 ]



ПОИСК



Г гидравлический усилитель основные параметры

Основные параметры усилителей

Основные параметры усилителей низкой частоты

Параметры высококачественных усилителей

Последовательность расчета следящих приводов со струйными усилителями и рекомендации по выбору основных параметров — j Пример расчета однокоординатного гидравлического следящего I привода со струйной трубкой

Регулировка и измерение параметров усилителей

Средства и методы измерения параметров усилителей

Стандарт DIN 45—500, параметры усилителей

Усилители мощности защита от параметры

Усилители — Обратная связ Параметры

Усилители — Обратная связь Параметры



© 2025 Mash-xxl.info Реклама на сайте