Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лазерная накачка пороговое значение

В заключение вычислим оптимальную связь на выходе лазера при Явх = 140 кВт, т. е. когда мощность накачки лазера в х = 2,8 раза превышает пороговое значение на рис. 5.18. Поскольку х ин = = 44,6, из (5.46) получаем ( 2) опт = 0,23, что соответствует (Т2)опт = 20%. Отсюда следует, что резонатор чрезмерно открыт. Это, возможно, сделано преднамеренно, поскольку, хотя это и приводит к небольшому (- 10 %) уменьшению выходной мощности лазерного пучка, зато улучшает его фокусирующие свойства. Действительно, увеличение Т2 достигается за счет увеличения числа М и, следовательно, ширины кольца выходного пучка [ (М—1)02 см. рис. 4.41]. Это приводит к улучшению свойств пучка при фокусировке.  [c.272]


Модуляция усиления, как и модуляция добротности, является методом, позволяющим генерировать лазерные импульсы короткой длительности (обычно от нескольких десятков до нескольких сотен наносекунд) и высокой пиковой мощности. Однако в отличие от модуляции добротности, при которой потери резко переключаются до низкого уровня, при модуляции усиления резко переключается усиление до высокого уровня. Модуляция усиления осуществляется с помощью столь короткого импульса накачки, что инверсия населенностей, а следовательно, и усиление начинают заметно превышать пороговые значения  [c.303]

Поэтому длительность импульса накачки должна быть приблизительно равна этому времени нарастания. В рассмотренных нами условиях максимальное значение инверсии может в 4— 10 раз превосходить пороговое значение, поэтому возможна генерация лазерного импульса высокой пиковой мощности и малой длительности.  [c.305]

Как обсуждалось во введении и 1.2, населенности энергетических уровней ионов неодима активной среды определяются совокупностью процессов накачки и спонтанных излучательных и безызлучательных переходов между уровнями активных ионов. Поэтому необходимо уметь рассчитывать населенности основных уровней энергии ионов неодима с учетом указанных процессов. В общем виде эта задача решается сложно, однако применительно к нашему случаю (близости среды к идеальной четырехуровневой) с достаточной степенью точности при отсутствии генерации могут быть получены простые аналитические выражения для численных оценок населенностей основных лазерных уровней. Эти выражения позволяют оценить пороговые значения мощности накачки и инверсной населенности, коэффициент усиления активной среды, стационарное значение инверсной населенности и т. д. Все эти параметры играют важную роль в лазерах и непосредственно использу-  [c.28]

Длительность светового импульса от импульсной лампы обычно составляет 0,5—1 мс. При уровнях накачки, которые в достаточной степени превышают пороговое значение, импульс излучения на выходе лазера приблизительно повторит по длительности излучение от импульсной лампы. Длительность импульса излучения, получаемая при таком типичном режиме работы лазера, оказывается слишком велика для формирования голограмм многих объектов кроме того, из-38 тепловых эффектов в лазерном веществе чрезвычайно трудно  [c.275]

Принцип действия. Для осуществления лазерной генерации в режиме самовозбуждения необходимо, как известно, обеспечить 1) амплитудное условие генерации, т.е. создать усиление в активной среде, достаточное для компенсации всех видов потерь 2) фазовое условие генерации, т.е. реализовать положительную обратную связь за счет использования оптических резонаторов либо самопроизвольно записывающихся объемных фазовых решеток в нелинейной среде 3) затравочное шумовое излучение, из которого развивается генерация. В традиционных лазерах усиление возникает в процессах вынужденного излучения в активной среде с инверсной населенностью. При пороговом значении накачки усиление света компенсирует его потери  [c.9]


Волна с частотой СО2 рождается от уровня спонтанных шумов, т.е. стоксовых фотонов, порожденных спонтанным комбинационным рассеянием волны накачки. При превышении порога ВКР интенсивность волны С02 быстро нарастает до уровня, сравнимого с интенсивностью накачки, что приводит к истощению последней. Стоксова компонента ВКР обладает всеми характеристиками лазерной волны когерентностью, направленностью (условия усиления для стоксовой волны реализуются вдоль пути распространения волны накачки в направлениях вперед и назад), большой интенсивностью. Если стоксова волна сама достигает порогового значения интенсивности, то она порождает при ВКР вторую стоксову компоненту и т.д. Это обстоятельство позволяет использовать стоксово ВКР для преобразования частоты лазерного излучения в длинноволновую область. Силь-  [c.224]

Из приведенного выше рассмотрения вполне разумно ожидать, что лазеры, в которых используются красители, могут генерировать на длинах волн в области спектра флуоресценции. Действительно, быстрая безызлучательная релаксация внутри возбужденного синглетного состояния 5i приводит к очень эффективному заселению верхнего лазерного уровня, а быстрая релаксация внутри основного состояния — к эффективному обеднению нижнего лазерного уровня. Следует также заметить, что в области длин волн флуоресценции раствор красителя достаточно прозрачен (т. е. соответствующее сеченне поглощения а невелико см., например, рнс. 6.29). Фактически же первый лазер на красителях был запущен поздно (в 1966 г.) [24, 25] относительно времени, с которого началось общее развитие лазерных устройств. Рассмотрим некоторые причины этого. Во-первых, это очень короткое время жизни т состояния 5i, поскольку мощность накачки обратно пропорциональна т. Хотя такой недостаток частично компенсируется большой величиной сечения перехода, произведение ах [напомним, что пороговая мощность накачки пропорциональна (ат) см. (5.35)] все же остается примерно на три порядка величины меньше, чем для твердотельных лазеров, таких, как Nd YAG. Вторая трудность обусловлена синглет-триплетной конверсией. Действительно, если тг ksT то молекулы будут накапливаться в триплетном состоянии, что приведет к поглощению за счет перехода 7 i->-7 2 (который является оптически разрешенным). К сожалению, это поглощение происходит, как правило, на длине волны флуоресценции (см., например, опять-таки рис. 6.29), что приводит к серьезному препятствию для возникновения генерации. Можно показать, что именно поэтому непрерывную генерацию можно получить лишь в случае, когда тг меньше некоторого значения, определяемого свойствами активной среды из красителя. Чтобы получить этот результат, заметим прежде всего, что кривую пропускания флуоресценции красителя (рис. 6.29) можно описать с помощью сечения вынужденного излучения Ое. Таким образом, если N2 — полная населенность состояния 5ь то соответствующее усиление (без насыщения) на определенной длине волны, при которой рассматривается Ое, равно ехр(Ы2<Уе1), где / — длина активной среды. Предположим теперь, что Ыт населенность триплетного состояния Гь Тогда генерация будет происходить при условии, что усиление за счет вынужденного излучения больше потерь, обусловленных триплет-триплетным поглощением, т. е. ,  [c.392]

Это выражение показывает, что при значении параметра накачки, достаточно низком по отношению к пороговому, квадрат модуля амплитуды убывает по экспоненциальному закону это означает нормальное распределение для амплитуды, т. е. лазерное излучение имеет в этом случае гауссов характер. У порога (р = 0) распределение имеет вид  [c.456]

Предположим, что генерация начинается при достижении инверсии порядка 1%. Тогда характерное значение пороговой скорости накачки Пег примерно в сто раз меньше А. Договоримся все скорости выражать в скоростях спонтанного распада верхнего лазерного уровня А. Оценим скорости индуцированных переходов. Пусть в режиме генерации скорость накачки П на порядок превышает пороговое значение, т. е. П = ЮПсг = 0,1 А. В свою очередь, для В из формул (4.91) и (4.92) получаем  [c.165]


Происхождение лазерного резонанса можно объяснить следующим образом. Увеличение тока с некоторой задержкой приводит к росту концентрации носителей. Повышенная концентрация в свою очередь вызывает возрастание рекомбинационного излучения, которое, опять с задержкой, увеличивает индуцированную рекомбинацию, что приводит к падению концентрации носителей. Наличие задержек приводит к тому, что это падение проходит через равновесное значение и поцесс становится колебательным. Собственная частота системы /о зависит от оптической постоянной времени Тф и постоянной времени рекомбинации Тдп. Однако взаимодействие нелинейнб, так что анализ усложняется, а резонансная частота оказывается зависящей, как это видно из рис. 11.7, от того, насколько ток накачки превышает пороговое значение /цор. Приведенные графики можно аппроксимировать теоретической зависимостью  [c.300]

Активная среда Р. л.— высокононизиров. плазма с электронной темп-рой от неск. сотен эВ до неск. кэВ, создаваемая при облучении мишени (напр., тонкой фольги из селена и иттрия) мощными лазерами видимого и ИК-диапазонов. Плазменное образование имеет длину в неск, см (0,5—5 см) и поперечный размер 0,01 — 0,1 см. Плазма создаётся, как правило, фокусировкой излучения либо 2-й гармоники N<1 УАО-лазера (см. Твердотельным лазер), либо излучения СОг-лазера, имеющих энергию излучения 1 кДж и длительность импульса генерации 0,1 — 10 нс. Энергия, необходимая для создания иона заданной кратности, и плотность атомов активного элемента в мишени определяют плотность энергии лазерного излучения накачки, необходимую для создания активной среды. Пороговые условия генерации Р. л. определяют мин. значения плотности ионов в плазме. Если длина поглощения генерируемого рентг. излучения больше длины активной области Ь кристалла, то пороговое условие генерации имеет вид  [c.365]

Прежде чем продолжить обсуждение, следует подчеркнуть, что когда мощность накачки превышает пороговую даже на весьма скромную величину, число фотонов qo в резонаторе обычно уже очень велико. В качестве примера рассмотрим числовые значения, соответствующие одномодовому непрерывному Nd YAG-лазеру (см. также разд. 5.3.6) Ле = 0,5 мм , y = 0,12, а = 3,5-10 м и т = 0,23 мс. Если положить L = 50 см, то получим Тс л 14 НС и из (5.32) имеем qo Ю [(Рр/Рпор) — 1]. Таким образом, даже если мы выберем Яр/Япор = 1,1, то будем иметь около 10 ° фотонов в резонаторе. Это означает, что в уравнении (5.1г) сразу за порогом член УаВ (q-j-1)JV2, описывающий как вынужденное, так и спонтанное излучение, вне всякого сомнения можно аппроксимировать выражением VaBqNi, что мы и делаем в настоящем рассмотрении. Это также означает, что число фотонов в установившемся режиме q весьма нечувствительно к выбранному нами конкретному значению числа начальных фотонов в резонаторе qt в момент времени / = О, которые необходимы для возникновения генерации. Как мы увидим в разд. 5.3.7, эта нечувствительность оказывает сильное влияние на выходные свойства лазерного пучка.  [c.248]

Происходящие при этом физические явления можно относительно просто описать, обращаясь к случаю пичковой генерации, представленной на рис. 5.24. Если предположить, что скорость накачки Wp = Wp t) имеет форму прямоугольного импульса, начинающегося при / = 0 и заканчивающегося при / = = 5 МКС, то излучение будет состоять лишь из первого пичка в изображенной на рисунке зависимости q(t), который возникает в момент времени около t = 5 мкс. Действительно, после генерации этого пичка инверсия будет уменьшена световым импульсом до уровня, который существенно ниже порогового и который не будет затем возрастать, поскольку накачка уже отсутствует. Таким образом, мы видим, что модуляция усиления по своему характеру аналогична пичковой генерации в лазере, рассмотренной в разд. 5.4.1. Заметим, что на практике временная зависимость накачки имеет вид колоколообразного импульса, а непрямоугольного. В этом случае мы будем считать, что максимум светового пичка соответствует спаду импульса накачки. Действительно, если бы максимум совпадал, например, с максимумом импульса накачки, то после генерации пичка оставалось бы достаточно энергии накачки, чтобы инверсия могла снова вырасти до значения выше порогового и, таким образом, в лазерной генерации появился бы второй пичок, хотя и меньшей интенсивности. Напротив, если бы число фотонов достигало максимума значительно позже на хвосте импульса накачки, то это означало бы, что накачка не была достаточно продолжительной, чтобы инверсия населенностей выросла до приемлемо высокого уровня. Из вышесказанного можно заключить, что для данного значения максимальной скорости накачки существует некоторая оптимальная длительность импульса. Если это максимальное значение увеличивается, то число фотонов нарастает быстрее и тогда необходимо уменьшить длительность импульса накачки. Можно также показать, что при увеличении максимальной скорости накачки возрастает максимальная инверсия и генерируется более короткий и интенсивный импульс. Для четырехуровневых лазеров типичные значения времени нарастания интенсивности лазерного излучения до своего пикового значения в зависимости от максимального значения скорости накачки могут составлять 5 Тс —20 Тс, где Тс время жизни фотона в резонаторе  [c.304]

Данные, приведенные на рис. 5.24, относятся к рубиновому лазеру с диаметром стержня 6,3 мм, длиной 7,5 см, причем каждое из двух зеркал напылено непосредственно па торцы стержня. Максимальное сечение лазерного перехода а = 2,5 10-2 см , показатель преломления стержня п= 1,76, а концентрация активных ионов в стержне Nt= 1,6 10 см . Исходя из указанных на рисунке стационарных значений NoVa и о, вычислите полные потери Y и величину х, показывающую, во сколько раз накачка превышает пороговую.  [c.328]

Важным применением явления ВКР в световодах стало развитие волоконных ВКР-лазеров [31-49], Такие лазеры не только имеют более низкий порог, чем однопроходное ВКР, но и могут перестраиваться в широком частотном диапазоне ( 10 ТГц), На рис, 8,4 схематически показан волоконный ВКР-лазер, Отрезок одномодового световода помещен внутрь резонатора Фабри-Перо, образованного частично отражающими зеркалами Mj и М . Резонатор обеспечивает резонансную частотно-избирательную обратную связь для стоксова излучения, возникающего в световоде благодаря ВКР. Внутрирезонаторная призма позволяет перестраивать длину волны лазерного излучения путем поворота зеркала М . Порог генерации лазера соответствует мощности накачки, при которой комбинационное усиление за обход резонатора компенсирует потери в резонаторе, состоящие из потерь на зеркалах и потерь при переводе отраженного от зеркал излучения обратно в световод. Если принять потери за обход резонатора равными обычному значению 10 дБ, то пороговым условием будет  [c.226]


Качественно эффект самоохлаждения можно понять следующим образом. При непрерывной накачке из состояния g в полосу поглощения (состояние 3) со скоростью П, мощность которой выше пороговой, в резонаторе лазера накапливается когерентное электрическое поле большой амплитуды. Оно вызывает быстрые индуцированные переходы между состояниями 1 и 2 со скоростью В. Инверсия населённостей этих состояний принимает такое значение, чтобы скомпенсировать все потери, которые связаны как с выходом излучения из резонатора, так и с оттоком части энергии поля на примесь иттербия. Поскольку длина волны генерации попадает в длинноволновое крыло линии поглощения иттербия, то величина Ь составляет небольшую долю от скорости В и потери на иттербии обусловлены главным образом скоростями спонтанной люминесценции иттербия а и а. Пусть О нагрев лазера преимущественно обусловлен безызлучательными переходами лазерных ионов из состояния 3 в состояние 2, сопровождающимися рождением фонона с энергией Ш32, и скоростью накачки П. Величина расщепления Ш32 в два-три раза меньше, чем величина расщепления основного состояния ионов иттербия 1г0.2 , на нижний подуровень которого происходит спонтанное излучение в анистоксовой области, приводящее к охлаждению. Понятно, что существует некое соотношение между значениями скоростей П,А,В и Ь,а,а, при котором процесс охлаждения будет компенсировать или даже превосходить процесс нагрева.  [c.156]

Таким образом, интенсивность лазерного излучения внутри резонатора пропорциональна интенсивности насыщения, яв ляющейся характеристикой среды. Следует заметить, что представляет собой стационарное значение населенности лазерного уровня, которое было бы в отсутствие излучения. Более того, поскольку /"— фиксированная величина для заданной среды, ясно, что / линейно возрастает со скоростью иакачкп S . Если мы введем критическую или пороговую) скорость накачки  [c.179]


Смотреть страницы где упоминается термин Лазерная накачка пороговое значение : [c.140]    [c.552]    [c.501]    [c.267]    [c.332]   
Принципы лазеров (1990) -- [ c.246 , c.250 ]



ПОИСК



Л <иер накачкой

Лазерная накачка

Лазерное (-ая, -ый)



© 2025 Mash-xxl.info Реклама на сайте