Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модели неупругого конструкционного материала

МОДЕЛИ НЕУПРУГОГО ПОВЕДЕНИЯ КОНСТРУКЦИОННОГО МАТЕРИАЛА В НЕИЗОТЕРМИЧЕСКИХ УСЛОВИЯХ  [c.242]

При более сложных программах нагружения с немонотонным изменением тепловых и силовых воздействий необходимо рассматривать достаточно малые этапы последовательного нагружения конструкции. На таких этапах удобно оперировать приращениями нагрузок, перемещений поверхностных точек и температур, а соотношения, описывающие напряженно-деформированное состояние, представлять в приращениях напряжений и деформаций. Проследим путь решения задачи термопластичности в пределах малого этапа нагружения, используя вариант модели неупругого поведения конструкционного материала, рассмотренный в п.4.5.5.  [c.251]


Рассмотренные модели конструкционных материалов в сочетании с современными методами определения температурного и напряженно-деформированного состояний и оценки работоспособности и долговечности конструкций используются в книге при изложении способов решения прикладных задач термопрочности для характерных конструктивных элементов, подверженных переменным во времени тепловым и механическим воздействиям. Кратко охарактеризованные подходы к оптимизации теплонапряженных конструкций могут быть использованы при оптимальном проектировании таких конструкций и создании систем автоматизированного проектирования. Описанные в приложении алгоритм и ФОРТРАН-программа обеспечивают численную реализацию одной из наиболее полных моделей неупругого поведения конструкционного материала в неизотермических условиях, которая позволяет провести анализ кинетики напряженно-деформированного состояния и оценить работоспособность и долговечность теплонапряженных элементов конструкций при различных режимах тепловых и механических воздействий.  [c.6]

Анализ рассмотренной модели и сопоставление ее поведения с экспериментальными данными по неупругому циклическому деформированию структурно-стабильных металлических конструкционных материалов, находящихся в циклически стабильном состоянии, показали практическую возможность еще одного кардинального упрощения такой модели путем постулирования подобия реологических функций всех ПЭ, составляющих элементарный объем. Разброс характеристик по ПЭ в этом случае может быть определен единственным параметром — параметром подобия реологической функции ПЭ некоторой выбранной среднестатистической функции, в дальнейшем называемой реологической функцией модели. Таким образом, для определения (идентификации) модели достаточно найти из испытаний лишь две функции, характеризующие реологические свойства конкретного материала реологическую функцию и функцию неоднородности, описывающую распределение упомянутых параметров подобия по ПЭ. Эти функции будем называть о пре  [c.150]

Рассмотренные в п.4.5.1 и 4.5.2 теории неупругого поведения материала в неизотермических условиях не учитывают в явной форме его микроструктуру и микромеханизм процесса деформирования, т.е. являются феноменологическими. Использование современных физических представлений о струюу ре конструкционных материалов и микромеханизме неупругого деформирования позволяет построить соответ-ствутощие физические модели термопластичности и термоползучести. Однако физические модели весьма сложны и их нерационально использовать при проведении инженерных расчетов теплонапряженных конструкций. Такие модели путем численного анализа дают возможность выявить общие закономерности в поведении материала при характерных режимах изотермического и неизотермического нагружения теплонапряженных конструкций и при необходимости уточнить более простые и удобные для практического применения феноменологические теории.  [c.236]


Таким образом, упрощенный вариант модели материала описывает основные эффекты, которые характерны для неупругого поведения конструкционного материала в неизотермических условиях. Среди этих эффектов следует отметить изменение предела текучести при изменении направления деформирования (эффект Баушингера) следование принципу Мазинга, распространенному на неизотерми-ческие условия циклическое изотропное упрочнение и разупрочнение материала неустановившуюся и установившуюся стадии ползучести при постоянной нагрузке взаимное влияние деформации ползучести и мгновенной пластической деформации изменение скорости ползучести при ступенчатом нагружении одного знака и знакопеременном нагружении обратную ползучесть в процессе разгрузки и в разгруженном состоянии релаксацию микронапряжений и возврат пластических свойств (отдых) материала влияние рекристаллизации на снятие изотропного упрочнения запаздывание изменения предела текучести в неизотермических условиях.  [c.131]

Поскольку приращения компонентов неупругой деформации AeJ-" находят по скорости ij, вычисленной в начале интервала времени и полагаемой в его пределах постоянной, возникает ограничение на выбор A v- Это ограничение обусловлено теми же соображениями, что и при интегрировании по явной конечнотразностной схеме уравнений (3.24)—(3.27), которые описывают используемую модель неупру-гого поведения конструкционного материала. Соотношения для предельных значений А , а также алгоритм и реализующая его ФОРТРАН-программа определения значения ё<">, которое соответствует 8 " в (3.44) при сложном напряженном состоянии, приведены в приложении.  [c.271]

Александров Д. А. Реологическая модель неупругого и неизотермически деформируемого конструкционного материала. — Изв. вузов. Машиностроение, 1982, № 5, с. 29—33.  [c.289]

При подготовке монографии мы стремились сделать ее полезной как для специалистов, так и для заинтересованных представителей смежных профессий и студентов. Для полноты представления материала в первых двух главах кратко изложены сведения из механики сплошных сред в объеме, необходимом для обсуждения экспериментов, и обзор современных экспериментальных методов. В третьей и четвертой главах обсуждаются результаты экспериментальных исследований вязкоупруго-пластической деформации материалов различных классов в ударных волнах и расчетные модели неупругого деформирования. Сопротивление разрушению конденсированных сред в субмикросекундном диапазоне длительностей нагрузки изучается путем анализа откольных явлений при отражении импульса ударного сжатия от поверхности тела. Механизм и динамика откольного разрушения в конструкционных металлах и сплавах, пластичных и хрупких монокристаллах, керамиках и горных породах, стеклах, полимерах, эластомерах и жидкостях обсуждаются в пятой главе. В шестой главе представлено несколько наиболее важных примеров полиморфных превращений веществ в ударных волнах. Некоторые вопросы взаимодействия импульсов лазерного и корпускулярного излучения с веществом, что является одним из новых приложений физики ударных волн, обсуждаются в гл.7. Восьмая глава представляет собой обзор уравнений состояния и кинетики разложения взрывчатых веществ в ударных и детонационных вол-  [c.7]

Для определения неупругого напряженно-деформированного состояния теплонапряжекных конструкций при изменяющихся во времени температурах и натрузках необходимо решать нелинейные задачи термопластичности и термоползучести. Если предпо-лагать малость деформаций, то нелинейность является следствием соотношений, связывающих между собой напряжения и деформации в конструкционном материале и составляющих математическую модель этого материала. Необходимость применения той или иной модели материала обусловлена в основном характером действующих на конструкцию нагрузок и ее температурным состоянием.  [c.226]


Смотреть страницы где упоминается термин Модели неупругого конструкционного материала : [c.241]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.0 ]



ПОИСК



Материал конструкционный

Материалы неупругие

Неупругость



© 2025 Mash-xxl.info Реклама на сайте