Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Шероховатость поверхности труб и каналов

Эквивалентная шероховатость поверхности труб и каналов  [c.78]

Абсолютная эквивалентная шероховатость для некоторых поверхностей труб и каналов  [c.269]

Шероховатость поверхности водотоков (труб, каналов и т. д.) может быть весьма различной. Если поверхность труб и открытых лотков покрывается специально  [c.160]

В практических условиях, по крайней мере при больших числах Рейнольдса, трубы не могут рассматриваться как гидравлически гладкие. Шероховатость стенок труб приводит к тому, что сопротивление получается более высоким, чем это следует из формул, выведенных в предыдущем параграфе для гладких труб. В связи с этим понятно, что законы течения в шероховатых трубах имеют большое практическое значение и поэтому уже давно служили предметом многочисленных исследований. Однако попытки систематического исследования наталкивались на одну принципиальную трудность, связанную с большим многообразием геометрических форм шероховатости и, следовательно, с чрезвычайно большим числом параметров, определяющих шероховатость. В самом деле, пусть мы имеем стенку с совершенно одинаковыми элементами, образующими шероховатость очевидно, что сопротивление, оказываемое такой стенкой движению жидкости, зависит не только от формы и высоты элементов шероховатости, но также от плотности распределения шероховатостей, т. е. от числа элементов шероховатости, приходящихся на единицу площади, и, кроме того, от группировки этих элементов на поверхности. Вследствие этих обстоятельств потребовалось довольно значительное время, прежде чем удалось вывести ясные и простые законы течения в шероховатых трубах. Обзор многочисленных старых измерений дал Л. Хопф [ ]. Он установил, что все ранее выведенные законы сопротивления в шероховатых трубах и каналах могут быть разбиты на два типа. В законах первого типа сопротивление в точности пропорционально квадрату скорости, следовательно, коэффициент сопротивления Я не зависит от числа Рейнольдса. Такой тип закона сопротивления получается для сравнительно грубой и очень частой шероховатости, наблюдающейся, например, у цемента, необработанного железа, а также в искусственных условиях— при наклейке на стенки крупных зерен песка. В этом случае шероховатость стенки может быть охарактеризована посредством одного-единственного параметра, так называемой относительной шероховатости к/В, где к есть высота элементов шероховатости, а 7 — радиус трубы с круглым поперечным сечением или гидравлический радиус некруглого сечения. Из соображений о подобии можно заключить, что при такой шероховатости коэффициент сопротивления X зависит только от относительной шероховатости. Эту зависимость можно определить экспериментально, если одну и ту же шерохова-  [c.554]


Другой вид искусственной шероховатости (рис. 10-3, в, г) подробно исследован в [Л. 17, 18, 33, 93, 102, 114]. При этом кольцевые выступы с различным относительным шагом sjh создавались как на наружной поверхности трубы при течении потока воды, воздуха и трансформаторного масла в кольцевом канале, так и на внутренней поверхности круглой трубы. Такой вид искусственной шерохо-  [c.273]

Другой вид искусственной шероховатости (рис. 10-3, в, г) подробно исследован в [16, 17, 33, 92, 101, 113]. При этом кольцевые выступы с различным относительным шагом s h создавались как на наружной поверхности трубы при течении потока воды, воздуха и трансформаторного масла в кольцевом канале, так и на внутренней поверхности круглой трубы. Такой вид искусственной шероховатости изучался также в плоском щелевом канале. Итоги этих исследований были обобщены в [16, 17]. Анализ показал, что для этого вида шероховатости параметром, имеющим решающее значение для интенсификации теплоотдачи, является отношение расстояния между выступами s к их высоте h s/h. Остальные характеристики, такие как форма выступа (прямоугольная или треугольная), отношение hid, имеют второстепенное значение. При этом высота выступов h должна превышать толщину вязкого подслоя. В [16, 17] показано, что причина интенсификации теплообмена связана со срывом и разрушением вязкого подслоя выступами шероховатости и возникновением вихревых зон. Оказывается, что для параметра sih существует оптимальное значение, при котором интенсификация теплоотдачи максимальна. В результате обобщения многочисленных опытных данных автор [16, 17] получил уравнение для теплоотдачи  [c.294]

Напомним, что равномерным называется движение жидкости в каналах, лотках, трубах и т. п., когда размеры и форма поперечного сечения их постоянны по всей длине. В этом случае свободная поверхность жидкости параллельна линии дна канала, и уклон ее равен уклону дна. В открытом русле равномерное движение возможно лишь при постоянных уклонах дна, форме и шероховатости русла. Это можно увидеть, если составить уравнение Д. Бернулли для двух сечений открытого русла (например, трубы, работающей неполным сечением) при равно  [c.140]

Каналы и трубы с поперечной дискретной шероховатостью имеют накатки любой произвольной формы поперечного сечения на внутренней поверхности трубы, вставки пря-  [c.567]

Из чисто механических соображений вытекает, что бетон, в котором напряженная стальная арматура сообщает ему сжимающие напряжения, обладает явными преимуществами. Этот так называемый предварительно напряженный бетон получил известность, например, в строительстве резервуаров, в производстве труб. Такой метод следовало бы далее подразделять на способ предварительного нагружения и способ последующего нагружения в соответствии с тем, приложены ли напряжения к стали до или после схватывания бетона. Существуют два метода передачи напряжения от стали к бетону, которые приводят к сжатию последнего. При использовании способа последующего нагружения к сконструированным соответствующим образом опорным плитам под прямым углом присоединяется проволока при создании в проволоке Напряжений бетон фактически становится сжатым. Обычно проволока проходит через каналы в бетоне и пространство между обоими материалами затем заполняется цементным раствором, в дальнейшем между проволокой и раствором возникают напряжения. При использовании способа предварительного напряжения передача напряжений зависит, по крайней мере частично, от степени шероховатости стальной поверхности. Испытания Копенгагена показали, что механическая связь в случае использования гладкой поверхности менее удовлетворительна, чем в случае ржавой поверхности, она даже еще хуже в случае использования поверхности с окалиной. Некоторые спецификации запрещают использовать сталь с ржавчиной или пленкой окалины для армирования, однако имеются сомнения, что такие предписания всегда соблюдались, тем более образования ржавчины нельзя избежать в условиях сборки понятно, что некоторые инженеры поощряют применение ржавой поверхности после удаления рыхлой ржавчины, что улучшает связь. Но это мероприятие, каковы ни были бы его механические преимущества, вводит опасность химического разрушения. Однако связь не зависит единственно от шероховатости поверхности. По мере того как напряжения в стали ослабляются и длина проволоки уменьшается, а диаметр слегка возрастает, сжимающие напряжения в радиальном направлении будут улучшать связь. Образование свежей ржавчины должно, по-видимому, также улучшать связь благодаря увеличению объема, однако это не является здравым способом получения передающихся напряжений.  [c.278]


В том случае, когда поверхность жидкостной пленки гладкая, гидравлическое сопротивление при течении двухфазного потока практически не зависит от состояния поверхности стенки (шероховатости) рабочего канала, так как основная доля диссипативных потерь энергии происходит на границе между паровым ядром и поверхностью жидкости. Этот режим движения, по-видимому, и имел место в [6], где было показано, что в определенных условиях гидравлическое сопротивление при движении двухфазного потока в каналах с гладкой и шероховатой (А=0.6 мм) поверхностью одинаково. Иную роль может играть шероховатость в тех случаях, когда по поверхности жидкой пленки распространяются волны. В этих условиях бугорки шероховатости могут играть роль своеобразных волноломов , затрудняя течение жидкой пленки и препятствуя образованию волн на ее поверхности. Таким образом, при этом режиме движения двухфазного потока увеличение относительной шероховатости стенок канал может снижать гидравлическое сопротивление. Эти соображения подтверждаются опытными данными, полученными в настоящей работе. При р=80 и 50 ата сопротивление шероховатой трубы приближается к гладкой, а при р=20 ата становится даже существенно ниже гладкой трубы.  [c.127]

Одна из таких мер — создание системы узких каналов или шероховатостей на внутренней поверхности тепловой трубы, покрытой жидкостью (рис. 5). Это приводит к более равномерному росту пузырьков и, таким образом, сдерживает скачкообразный переход к пленочному кипению. В частности, для воды эти меры позволяют  [c.14]

При турбулентном течении в ядре потока коэффициент трения i3 должен главным образом зависеть от характера торможения на волнах, так же, как это имеет место при развитом турбулентном течении однофазной жидкости в шероховатых трубах, ибо ядро потока как бы движется в канале с жидкими стенками. Предположение, что процессы, происходящие при обтекании газовым потоком отдельных волн на поверхности пленки, аналогичны тем. которые происходят у бугорков шероховатой поверхности, высказывалось в известной работе П. Л. Капицы (1948). Шероховатость жидких стенок сильно изменяется в широких пределах в зависимости от режима течения пленки и ядра потока. К настоящему времени проведены систематические экспериментальные исследования по определению влияния шероховатости поверхности жидкой пленки на величину (С. Shearer,  [c.202]

Все приведенные формулы относятся к трубам, имеющим технически гладкую поверхность. Для иитенсификацин геилоотдачи в ряде случаев на поверхность наносят искусственную шероховатость или чаще всего применяют волнистые, а также различным образом оребрениые трубы (стержни). Однако следует считаться с тем, что одновременно возрастает и гидродинамическое сопротивление, причем, как правило, в большей степени, чем возрастает интенсивность теплоотдачи. Такой же эффект вызывают применяемые иногда турбулизирующие или закручивающие поток вставки в круглые трубы, а также дистанционные узлы в кольцевых каналах. Выбор подходящих вариантов должен основываться в подобных случаях на комплексном рассмотрении вопроса, учитывающем затрачиваемую на прокачку теплоносителя мощность, технологичность устройств, удобство сборки и эксплуатации, стоимость и прочие технико-экономические соображения. По этим вопросам имеется обширная специальная литература.  [c.127]

Однако в реальных конструкциях на течение в боковых полостях влияет также шероховагость стенок. Поэтому в общем случае целесообразно использовать в качестве связи между напряжением трения и средней скоростью в потоке зависимости работы [2], справедливые, в отличие от других формул, как при гидравлически гладких, так и при шероховатых стенках, а также в переходной области. Эти зависимости хорошо согласуются с многочисленными экспериментальными исследованиями каналов и труб с естественной шероховатостью и переходят в крайних случаях при гидравлически гладких поверхностях в известные формулы Блазиуса. Общую для шероховатых и гладких стенок формулу Альтшуля для коэффициента сопротивления трения жидкости можно представить  [c.19]



Смотреть страницы где упоминается термин Шероховатость поверхности труб и каналов : [c.202]    [c.714]   
Справочник по гидравлическим сопротивление (1992) -- [ c.0 ]



ПОИСК



Поверхности шероховатость

Труба Поверхность

Трубы шероховатые

Шероховатость поверхности при поверхностей

Шероховатость поверхности труб и каналов эквивалентная

Шероховатость труб

Шероховатые поверхности



© 2025 Mash-xxl.info Реклама на сайте