Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Спектрально-двойные звезды

Расщепление спектральных линий некоторых звезд на две компоненты позволяет сделать вывод о том, что наблюдается система двух звезд, обращающихся вокруг центра масс. Если обычными или интерференционными методами эти звезды разрешить не удается, то систему называют спектрально-двойной звездой. С помощью эффекта Доплера можно определить скорости компонент и период обращения.  [c.409]


Правая часть (14.21) называется функцией масс спектрально-двойной звезды.  [c.461]

Центр масс спектрально-двойной звезды не имеет лучевой скорости относительно Солнца. Покажите, что гелиоцентрическая лучевая скорость / одного компонента двойной выражается как  [c.476]

Майкельсон применил интерферометрическое наблюдение для оценки малых угловых расстояний между двойными звездами, а также для оценки углового диаметра звезд. Метод Майкельсона, равно как и применение его к определению размеров субмикроскопических частичек, будет изложен ниже (см. 45). Наконец, понятно, что интерференционные методы, позволяющие с огромной точностью определять длину волны, могут служить для самых тонких спектроскопических исследований (тонкая структура спектральных линий, исследование формы и ширины спектральных линий, ничтожные изменения в строении спектральных линий). Интерференционные спектроскопы, их достоинства и недостатки будут обсуждены вместе с другими спектральными приборами (дифракционная решетка, призма) в 50.  [c.149]

Аподизация облегчает обнаружение сателлитов спектральных линий, разрешение двойных звезд с сильно различающейся яркостью, микроскопические исследования малых деталей объекта, расположенных рядом с более крупными и яркими деталями.  [c.365]

Таким образом, двойная система определяется как пара звезд, движущихся по орбитам вокруг общего центра масс силой, не дающей звездам разлететься, является взаимное гравитационное притяжение. Визуально-двойными называются системы, у которых видны раздельно оба компонента. Компоненты спектрально-двойных систем настолько близки друг к другу, что разрешающей способности телескопа не хватает, чтобы их различить. Такие системы можно распознавать по доплеровскому смещению спектральных линий, обусловленному орбитальным движением компонентов. К третьему классу двойных систем относятся затменные двойные. Такая система также выглядит как одна звезда, но ее компоненты периодически закрывают друг друга (полностью или частично). Регулярные падения блеска такой звезды свидетельствуют о ее двойной природе. Двойные звезды могут быть одновременно и спектрально-двойными, и затменными.  [c.23]

Такие системы, показывающие периодические изменения описанного выше характера, именуются спектрально-двойными. Построение графика изменения со временем лучевых скоростей каждого компонента дает нам кривую скоростей. Анализ кривой скоростей позволяет определить орбиту звезды относительно центра масс системы. В некоторых случаях кажущаяся одиночной звезда показывает, как и ожидалось, спектр с единичными линиями, но обнаруживается, что звезда обладает лучевой скоростью, которая подвержена периодическим изменениям. Это снова интерпретируется как случай звезды, входящей в качестве компонента в двойную систему, вторая звезда которой, однако, слишком слаба, чтобы внести сколько-нибудь значительный вклад в общий спектр системы.  [c.446]


Значения отношений светимостей и радиусов звезд помогает нам сравнить свойства звезд, являющихся компонентами затменной двойной системы. Дальнейший анализ кривых блеска во многих случаях позволяет связать радиусы звезд с размерами их орбит возможно также определить наклонение орбиты звезды по отношению к наблюдателю. Вся эта информация особенно полезна, если затменная двойная также наблюдается как спектрально-двойная (см. разд. 14.6). Однако изящные методы, используемые для такого анализа кривых блеска, выходят за рамки нашего изложения и не будут здесь рассматриваться.  [c.454]

Если звезда является и затменной двойной, и спектрально-двойной, можно определить массы компонентов н абсолютные значения их радиусов  [c.461]

Из приведенных выше аргументов становится очевидным, что наиболее частая форма четверных систем, в которых две тесных пары звезд гравитационно связаны друг с другом, причем расстояние между парами гораздо больше расстояния между компонентами в каждой паре, также является квазиустойчивой. Действительно, звезда Кастор (а Близнецов) иллюстрирует этот случай в особенно яркой форме. Она состоит нз шести компонентов, составляющих три спектрально-двойных, которые мы обозначим Л, В и С. Их периоды обращения составляют соответственно 9, 2 и 0,8 суток. Двойная звезда В обращается вокруг двойной А с периодом в несколько сотен лет двойная звезда С обращается вокруг системы А и В с периодом в несколько тысяч лет.  [c.468]

На рис. А.6 показана небесная сфера для спектрально-двойной звезды. Компонент С обращается вокруг центра масс двойной системы (точка G). Требуется найти компонент скорости вдоль луча зрения GZ (т. е. лучевую скорость). Спедовательно, R— , где л-, у, г — координаты компонента С. Далее, г = = г sin BD. Из треугольника NBD прп помощи формулы синусов находим  [c.526]

Орбитальное движение двойных звезд. Наиболее массивная звезда, известная в настоящее время — это звезда Дж. С. Пласкета. Она является двойной звездой ), т.е. состоит из двух звезд, связанных между собой силой тяготения. Из спектральных исследований известно  [c.296]

Световая волна в вакууме представляет собой переменное электромагнитное поле высокой частоты, распространяющееся с постоянной скоростью (с = 2,9979-10 см/с), не зависящей от частоты. Последнее обстоятельство может считаться установленным с большой степенью достоверности наблюдениями над астрономическими явлениями. Так, исследование затмения удаленных двойных звезд не обнаруживает никаких аномалий в спектральном составе света, доходянщго до нас в начале н конце затмений. Между тем затмение звезды или выход ее из тени своего спутника означает обрыв или начало распространения светового импульса, далеко не монохроматического и могущего рассматриваться как результат наложения многих монохроматических излучений. Если бы скорость этих излучений в межпланетном пространстве была различна, то импульс должен был бы дойти до нас значительно деформированным. Например, предположим для простоты, что этот импульс можно уподобить двум почти монохроматическим группам, синей и красной , и примем, что скорость распространения красной группы больше, чем синей мы должны были бы наблюдать при начале затмения изменение цвета звезды от нормального к синему, а при окончании его — от красного к нормальному. При огромных расстояниях, отделяющих от нас двойные звезды, даже ничтожная разница в скоростях должна была бы дать заметный эффект. В действительности же такой эффект не имеет места. Так, наблюдения Aparo над переменной звездой Алголь привели его к заключению, что разность между скоростью распространения красного и фиолетового излучения во всяком случае меньше одной стотысячной величины самой скорости. Эти и подобные наблюдения заставляют признать, что дисперсия света в межпланетном пространстве ) отсутствует. При  [c.538]

В случае кратных звезд данные относятся ко всей системе в целом. Обозначения следующие Виз. дв. — внзуально-двойная Сп. дв. — спектрально-двойная Чет. — четырехкомпснгнтная система Перем. — переменная Виз. тр. — визуально-тройная.  [c.981]

Частичное подавление вторичных максимумов разумно выбранной функцией зрачка называется атдизацией ). В спектроскопии это облегчает обнаружение сателлитов спектральных липий, а в астрономии — разрешение двойных звезд с сильно различающейся видимой яркостью.  [c.382]


Многие исследования были направлены на то, чтобы определить, какую часть среди двойных звезд составляют тройные звезды и звездные системы более высокой кратности. Например, визуальные двойные системы при более близком рассмотрении могут оказаться троипыми системами, так как один компонент пары на самом деле является спектрально-двойной. Сейчас число известных систем настолько велико, что можно с достаточной надежностью оценить долю тройных звезд и систем более высокой кратности в общем количестве двойных и кратных звезд. Оказалось, что их доля составляет от одрюй четверти до одной трети. Ситуация осложняется наложением эффектов селекции и возможным включением в число тройных систем ложных тройных звезд. Тем не менее результаты, полученные с применением самых различных методов, хорошо согласуются.  [c.24]

На непрерывный спектр звезды в области его максимума накладываются скачки (резкие изменения интенсивности с частотой рис. 1), возникающие на границах спектральных серий наиб, обильных атомов. Основными являются балъмеровский скачок (ок. 3650 А) и лаймановский скачок (ок. 912 А). Поскольку в фотосфере градиент темп-ры направлен внутрь звезды, наблюдаемое излучение оказывается слабее в тех областях, где ниже прозрачность фотосферы (в областях спектра, где 3. а. наиболее прозрачна, видно излучение, испускаемое более глубокими и горячими слоями). Этим определяется характер скачков, а также тот факт, что спектральные линии обычно видны в поглощении. Градиент темп-ры в 3. а. приводит также к явлению потемнения к краю диска звезды, изучаемому по покрытию диска одной звезды другой звездой в затменных двойных системах.  [c.62]

Звёздная активность тесно связана с наличием конвективной зоны в подфотосфсрной области и вращепнсм звезды вокруг оси. 4e,vi сильнее развита конвективная зона и чем быстрее вращение звезды, тем интенсивное активные процессы. Наиб, интенсивны они на молодых, ещё не замедливших вращение звёздах (типа Т Таи) и в тесных двойных звёздах поздних спектральных классов (типа BS Vn). Темп-ры корон таких звёзд  [c.63]

По наблюдениям ряда вспыхивавших Н. з. установлено, что вспышки происходят в одном из компонентов тесной двойной системы (ТДС) (см. Тесные двойные звёзды). Такие системы содержат в качестве гл. звезды белый карлик (БК), а спутник является звездой позднего спектрального класса малой светимости (красным карликом). Период обращения в тех ТДС, где происходили вспышки Н. 3., составляет неск. часов, соответственно характерный размер системы порядка 10 см. Эти данные послужили основой для выяснения причины вспышек Н. 3. и их рекуррентности. Если красный карлик заполняет свою полость Роша, то его вещество, попав в точку Лагранжа (рис.), при малом возмущении скорости может попасть внутрь полости Роша Б К и при надлежащих условиях присоединиться к нему. Часть вещества, теряемого красным карликом, может и не быть аккрецирована БК, а будет потеряна системой и образует уплощённую оболочку в орбитальной плоскости системы. Перетекающее на БК вещество образует аккрец. диск (см. Аккреция), и постепенно на его поверхности нарастает слой, содержащий большое кол-во водорода. При достаточно большой массе аккре-циров. вещества плотность в нём возрастает настолько, что начинаются термоядерные реакции. Как показали расчёты, неустойчивость развивается очень быстро. В образующемся в периферийных областях БК слоевом источнике энергии достигается темп-ра 10 К и боль-  [c.358]


Смотреть страницы где упоминается термин Спектрально-двойные звезды : [c.219]    [c.438]    [c.81]    [c.66]    [c.408]    [c.463]    [c.358]    [c.410]   
Смотреть главы в:

Движение по орбитам  -> Спектрально-двойные звезды



ПОИСК



Двойни

Звезда

Звезда двойная

П двойной



© 2025 Mash-xxl.info Реклама на сайте