Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двойные системы визуальные

Таким образом, двойная система определяется как пара звезд, движущихся по орбитам вокруг общего центра масс силой, не дающей звездам разлететься, является взаимное гравитационное притяжение. Визуально-двойными называются системы, у которых видны раздельно оба компонента. Компоненты спектрально-двойных систем настолько близки друг к другу, что разрешающей способности телескопа не хватает, чтобы их различить. Такие системы можно распознавать по доплеровскому смещению спектральных линий, обусловленному орбитальным движением компонентов. К третьему классу двойных систем относятся затменные двойные. Такая система также выглядит как одна звезда, но ее компоненты периодически закрывают друг друга (полностью или частично). Регулярные падения блеска такой звезды свидетельствуют о ее двойной природе. Двойные звезды могут быть одновременно и спектрально-двойными, и затменными.  [c.23]


Анализируя (5.2) при разных значениях шага т, были определены неустойчивые моды (рис. 6), которые оказались более реалистичными для анализа существования равновесных конфигураций реальных вихревых структур, чем решение для системы из точечных вихрей [И]. С целью проведения сопоставления между системами с разным числом вихрей для сохранения суммарной интенсивности в системе размер вихрей выбирался так, чтобы суммарная площадь сечений ядер вихрей была одинаковой, т. е. е = 0.15л/]У. В результате заметим, что учет винтовой формы вихрей с уменьшением их шага приводит к потере устойчивости вихревыми системами все для меньшего и меньшего их числа, а при т < 1.4 устойчивые конфигурации из винтовых вихрей отсутствуют полностью. Качественно это согласуется с результатами визуальных наблюдений и снимет отмеченное во введении противоречие их сравнения с данными теории равновесия точечных вихревых систем. Более того, экспериментальные результаты работы [3] позволяют провести и количественное сравнение. В [3] описана двойная вихревая структура N = 2 с безразмерным шагом т = 1.45. Этот режим хоть и близок к границе неустойчивости (см. диаграммы рис. 6), но является еще устойчивым, т.е. такая вихревая пара существовать может. А близость ее параметров к границе неустойчивых режимов косвенно подтверждается тем, что получить ее в эксперименте было очень трудно, требовалась тонкая регулировка экспериментальной установки и режимных параметров течения для получения вихревой пары с параметрами, обеспечивающими ее устойчивой существование.  [c.412]

Угловое разделение компонентов визуально-двойных звезд может быть измерено либо визуально (с помощью поворачивающегося микрометра на окуляре), либо их положения регистрируются с помощью фотографии для последующего измерения в лаборатории. Путем регулярных наблюдений можно определить видимые орбиты этих звезд. Типичные периоды обращения лежат в пределах от немногих десятков до сотен лет. Некоторые двойные звезды не измерялись в течение времени, достаточного для завершения одного оборота в системе, так что значение периода обращения содержит значительную неточность.  [c.446]

Многие исследования были направлены на то, чтобы определить, какую часть среди двойных звезд составляют тройные звезды и звездные системы более высокой кратности. Например, визуальные двойные системы при более близком рассмотрении могут оказаться троипыми системами, так как один компонент пары на самом деле является спектрально-двойной. Сейчас число известных систем настолько велико, что можно с достаточной надежностью оценить долю тройных звезд и систем более высокой кратности в общем количестве двойных и кратных звезд. Оказалось, что их доля составляет от одрюй четверти до одной трети. Ситуация осложняется наложением эффектов селекции и возможным включением в число тройных систем ложных тройных звезд. Тем не менее результаты, полученные с применением самых различных методов, хорошо согласуются.  [c.24]


В телескопическом HP, имеющем отверстие в центре глухого зеркала, формируется лишь один узконаправленный пучок 3 (см. рис. 4.6, а), который отстает от пучка сверхсветимости 2 на время одного двойного прохода излучения в резонаторе (At = 10 не — см.рис. 4.6, в). Это объясняется тем, что в такой оптической системе приосевые пучки — как сжимающиеся, так и многопроходные расширяющиеся — резонатором не поддерживаются. Расходимость пучка 3, как и при работе с резонатором без отверстия, при изменении М в пределах 5 < М 300 уменьшается от 2,5 до 0,115 мрад. В плоскости фокусировки при визуальном наблюдении видно одно яркое пятно, имеющее достаточно высокую стабильность. В распределении интенсивности в дальней зоне имеется несколько пичков (см. рис. 4.6, б), появление которых, вероятнее всего, связано с отражением излучения от границы отверстия в глухом зеркале. Относительная нестабильность положения оси диаграммы направленности и импульсной энергии пучка 3 значительно меньше, чем дифракционного. Характеристики выходного излучения исследовались при диаметрах отверстия 4, 8 и 10 мм. Мощность резонаторного пучка (рис. 4.9, кривая З ) при диаметре отверстия 8 мм для М — 5 составила 19 Вт (66% общей мощности), для М = 100 - 9,5 Вт (37%), для М 300 - 4,5 Вт (20%).  [c.123]

В случае кратных звезд данные относятся ко всей системе в целом. Обозначения следующие Виз. дв. — внзуально-двойная Сп. дв. — спектрально-двойная Чет. — четырехкомпснгнтная система Перем. — переменная Виз. тр. — визуально-тройная.  [c.981]


Смотреть страницы где упоминается термин Двойные системы визуальные : [c.152]   
Движение по орбитам (1981) -- [ c.23 , c.444 , c.446 ]



ПОИСК



Двойни

Двойные системы

П двойной



© 2025 Mash-xxl.info Реклама на сайте