Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Схема решения газодинамических задач по методу характеристик

I .4. СХЕМА РЕШЕНИЯ ГАЗОДИНАМИЧЕСКИХ ЗАДАЧ ПО МЕТОДУ ХАРАКТЕРИСТИК  [c.215]

Распределенные интерференционные аэродинамические нагрузки для случая двух тел определены численно А.Н. Кравцовым с помощью комплекса программ, описанного в [10]. В этих программах обтекание тела (системы тел) сверхзвуковым потоком газа рассчитывается маршевым методом с выделением основных ударных волн и при отсутствии в поле течения дозвуковых зон. Конечно-разностная схема (Мак-Кормака) имеет второй порядок точности. Заметим, что численное решение задачи обтекания тел с ярко выраженными областями разрежения (в данном случае это течения Прандтля - Майера в окрестности изломов образующей тела при переходе от конического носка к цилиндрической части корпуса) даже в случае выделения ударных волн в качестве разрывов имеет лишь первый порядок точности из-за разрывов первых производных газодинамических функций на начальных характеристиках вееров разрежения. Тем не менее, как показывают сравнения, выполненные в [10], эксперимент и расчет дают очень близкие результаты по силовым и моментным характеристикам для тел рассматриваемого класса.  [c.194]


Введение. Методы выделения поверхностей разрывов при численных расчетах газодинамических задач известны [1-5]. Основываются они либо на методе характеристик [1] с алгоритмическим внесением специальных процедур, например выделение плавающих разрывов [6], либо на решении задачи о распаде разрыва [2] с последующим использованием подвижных сеток. Применение подобных подходов в нелинейной динамике деформируемых твердых тел проблематично из-за взаимозависимости в них, по существу, двух процессов распространения граничных возмущений изменение объемных деформаций и деформаций изменения формы. Поэтому в этом случае используются, главным образом, различные варианты схем сквозного счета [7-9]. Следует, однако, заметить, что из-за наличия в деформируемых телах более значимого диссипативного механизма (пластичность, ползучесть), проблема выделения фронтов разрывов в твердых деформируемых средах не стоит столь остро, как в газовой динамике. Иначе, использование здесь разных вычислительных методик, основанных на процедурах сквозного счета, гораздо более оправдано. И все же существуют ситуации в динамике деформируемых твердых тел, когда нестационарность явления столь существенна (отражение и взаимодействие ударных волн при высокоскоростном соударении и др.), что выделение нелинейных разрывов может стать необходимым. Здесь предлагается способ расчета ударного деформирования, выделяющий поверхность разрыва путем включения в неявную разностную схему одновременного вычисление параметров прифронтовой асимптотики, т. е. параметров разложения решения непосредственно за поверхностью разрывов в асимптотический ряд. Способы построения таких разложений могут основываться на методе возмущений  [c.146]

С конца бО-х годов наряду с методом характеристик для расчета сверхзвуковых течений в ЛАБОРАТОРИИ интенсивно развивались методы расчета нестационарных течений, а на их основе с использованием процесса установления - стационарных смешанных (с переходом через скорость звука) течений. Для таких расчетов в качестве базовой была взята монотонная разностная схема, предложенная С. К. Годуновым в 1959 г. [15] для расчета нестационарных течений. В основе численной реализации этой схемы (далее схемы Годунова -СГ) лежит решение задачи о распаде произвольного разрыва, в силу чего СГ получила название раснадной . К концу бО-х годов в аэро- и газодинамических приложениях были известны лишь единичные примеры ее применения. К тому же полученные в них результаты не отличались высоким качеством по сравнению с результатами, полученными в те годы другими методами. В противоположность этому первая же выполненная в ЛАБОРАТОРИИ работа по применению СГ ([16, 17] и Глава 7.2) к решению прямой задачи теории сопла Лаваля продемонстрировала несомненные достоинства указанной схемы. Существенным моментом для успеха применения СГ для расчета смешанных течений стало обнаружение ситуаций, при которых в задаче о распаде разрыва граница разностной ячейки попадает в волну разрежения. Такие ситуации неизбежно возникают вблизи звуковых линий при расчете смешанных течений методом установления. Однако в двумерных задачах они, снижая точность результатов, оставались незамеченными. Указанная возможность была обнаружена при решении в одномерном приближении задачи о запуске ударной трубы переменной площади поперечного сечения ([18] и Глава 7.3). Предложенный тогда же элементарный способ учета подобных ситуаций стал неотъемлемой принадлежностью любых реализаций раснадных схем.  [c.115]



Смотреть главы в:

Аэродинамика Ч.1  -> Схема решения газодинамических задач по методу характеристик



ПОИСК



Задача и метод

Задачи и методы их решения

Метод характеристик

Решение Схема

Решения метод

Схемы Характеристики

Схемы методов



© 2025 Mash-xxl.info Реклама на сайте