Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения для элементов промежуточной орбиты

В предыдущих главах было подробно изучено проме-н уточное движение искусственного спутника. Была рассмотрена качественная картина движения, введены элементы промежуточной орбиты и получены все необходимые формулы, позволяющие определять положение спутника и его скорость для произвольного момента времени. В настоящей главе будут выведены дифференциальные уравнения, которые дадут возможность находить возмущения, не принятые во внимание при построении промежуточной орбиты.  [c.110]


Полученные в 4.5, 4.9 и 4.10 дифференциальные уравнения для элементов промежуточной орбиты позволяют довольно просто построить аналитическую теорию движения спутника со всей необходимой для практики точностью. Важной особенностью этих уравнений является то, что они дают возможность уже в первом приближении находить возмущения, обусловленные совместным влиянием различных возмущающих факторов и сжатия Земли.  [c.144]

Дифференциальные уравнения для элементов промежуточной орбиты  [c.591]

В четвертой главе выводятся различные формы дифференциальных уравнений для элементов промежуточного движения. Дается общий метод решения этих уравнений, позволяющий находить все возмущения в движении спутника, которые не были учтены при построении промежуточной орбиты. Приводятся также некоторые качественные исследования возмущенного движения спутника.  [c.9]

Рассмотренная в предыдущем параграфе промежуточная орбита учитывает главный член, а также вторую, третью и часть четвертой зональные гармоники потенциала притяжения Земли. Чтобы построить полную теорию движения спутника, которая учитывала бы все остальные возмущающие факторы, нужно иметь дифференциальные уравнения для элементов промежуточного движения. Здесь мы приведем одну систему таких уравнений. Она получена в работе [54].  [c.591]

Канонические элементы a , и аналогичны каноническим элементам Якоби в кеплеровом движении. Известно, что элементы Якоби не являются удобными переменными при решении уравнений возмущенного движения. Их недостаток заключается в том, что в правых частях дифференциальных уравнений появляются смешанные члены, т. е. члены вида t sin yt, где у — постоянная ). По аналогичным причинам элементы и р необходимо заменить другими, более удобными каноническими элементами. В теории кеплерова движения такими элементами служат элементы Делоне и элементы Пуанкаре. Здесь мы введем аналогичные системы элементов. Заметим, однако, что в данном случае задача существенно осложняется тем обстоятельством, что рассматриваемая промежуточная орбита характеризуется тремя частотами,  [c.111]

В этом параграфе будет рассмотрен другой тип аппроксимирующих выражений для потенциала притяжения Земли. Эти выражения были предложены Р. Барраром [29], Дж. Винти [30] и М. Д. Кисликом [31]. Все они обладают двумя важнейшими свойствами. Во-первых, они отличаются от потенциала реальной Земли членами порядка выше первого относительно сжатия. Во-вторых, дифференциальные уравнения движения в гравитационном поле, определяемом аппроксимирующими потенциалами, строго интегрируются в квадратурах. В отличие от промежуточных потенциалов, рассмотренных в предыдущих параграфах, они зависят только от постоянных гравитационного поля Земли, и не зависят от элементов орбиты спутника. Возмущающая функция в этом случае не содержит второй зональной гармоники.  [c.581]



Смотреть страницы где упоминается термин Дифференциальные уравнения для элементов промежуточной орбиты : [c.203]    [c.297]   
Смотреть главы в:

Справочное руководство по небесной механике и астродинамике Изд.2  -> Дифференциальные уравнения для элементов промежуточной орбиты



ПОИСК



Дифференциальное уравнение орбиты

Орбита

Промежуточные элементы

Уравнение орбиты

Уравнения Элементы

Элементы орбиты



© 2025 Mash-xxl.info Реклама на сайте