Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые частные случаи задачи неподвижных центров

Два неподвижных притягивающих центра ). Рассмотрим движение планеты массы в поле сил двух притягивающих центров с массами m и 7И. движение происходит в плоскости, проходящей через оба центра. Эта задача представляет большой интерес, поскольку может рассматриваться как некоторый частный случай задачи трех тел. Впервые она была подробно  [c.320]

Идея применить обобщенную задачу двух неподвижных центров для построения промежуточных орбит искусственных спутников была выдвинута в 1961 г. Е. А. Гребениковым, В. Г. Деминым и автором [24], [25]. Предложенная этими авторами формула (1.9.8) обобщала результаты Дж. Винти и М. Д. Кислика на случай несимметричного тела. Оказалось также, что менее удачная, но, несомненно, представляющая интерес аппроксимирующая формула Р. Баррара [26] может рассматриваться как некоторый предельный случай формулы (1.9.8). Другими словами, формула (1.9.8) содержит в себе все аппроксимирующие выражения для потенциала как частные или предельные случаи.  [c.45]


Обобщенная задача двух неподвижных центров (см. ч. VI) также допускает круговые орбиты. Их устойчивость при постоянно действующих возмущениях исследована в работах [135], [136], [137], а для случая предельного варианта задачи двух неподвижных центров в [138]. Названная задача допускает в качестве частных рещений так называемые эллипсоидальные и ги-перболоидальные орбиты [47]. Эти орбиты лежат на эллипсоиде или на гиперболоиде вращения. Первые располагаются между двумя параллелями, и если являются периодическими, то после некоторого числа оборотов замыкаются, в противном случае имеем обмотку части эллипсопда. Гиперболоидальные траектории не являются спутниковыми орбитами, так как при оо материальная точка удаляется на бесконечность. С помошью связки интегралов В. Г. Демин [87] показал, что эллипсоидальные орбиты устойчивы по отношению к большой полуоси и эксцентриситету эллипсоида и гиперболоида, на которых происходит движение спутника. Устойчивость движения стационарных (или суточных) спутников рассмотрена в [89], [137].  [c.848]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]



Смотреть главы в:

Небесная механика Аналитические и качественные методыИзд.2  -> Некоторые частные случаи задачи неподвижных центров



ПОИСК



Задача п неподвижных центров

К п частный

Некоторые задачи

Некоторые частные задачи

Некоторые частные случаи

Частные задачи

Частные случаи

Частный случай



© 2025 Mash-xxl.info Реклама на сайте