Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пуассонова структура и уравнения движения

Уравнения (1.10) имеют интеграл энергии Я и геометрический интеграл F = f r). В стандартной симплектической структуре dp Adr скобка Пуассона Я, F равна нулю. Пусть д г, г) — первый интеграл классических уравнений движения г = -dV/dr-j--t- Xdf /дг, f r) = О, а G — функция д, представленная с помощью  [c.26]

Наиболее естественные и удобные для исследований формы уравнений движения твердого тела могут быть получены из общих уравнений динамики в квазикоординатах. Лагранжева форма этих уравнений была установлена А. Пуанкаре [255], а гамильтонова — П. Г. Четаевым [181]. Их возможные обобщения для неголономной ситуации рассматривались в [91, 154]. В динамике твердого тела уравнения Пуанкаре-Четаева приводят к гамильтоновым уравнениям с линейным структурным тензором, т. е. к только что рассматривавшейся структуре Ли-Пуассона (см. 1). Приведем здесь свой вывод уравнений Пуанкаре и Пуанкаре-Четаева, т.к. их обсуждение отсутствует в доступной литературе.  [c.33]


Доказанная теорема дает полное описание всех движений, целиком находящихся в достаточно малой окрестности гомоклинической структуры. Совокупность этих движений достаточно сложна. При достаточной малости окрестности б гомоклинической структуры все эти движения седлового типа. Среди них бесчисленное множество пе зио-дических движений, отвечающих всевозможным периодическим последовательностям вида (7.80), асимптотических к этим периодическим, устойчивых по Пуассону непериодических. Несмотря на необычайную сложность этого множества движений оно не изменяет своей структуры при малых гладких возмущениях правых частей дифференциальных уравнений, поскольку его описание с помощью  [c.324]

Симплектическое слоепие. Обобщение теоремы Дарбу. Если скобка Пуассона является вырожденной, то пуассоново многообразие (фазовое пространство) расслаивается на симплектические слои листы), ограничение пуассоновой структуры на которые уже невырождено. Эти слои, как правило, представляют собой общий уровень всех функций Казимира. На слое справедлива теорема Дарбу и каноническая форма уравнений движения. Однако для приложений сведение к такой системе не всегда бывает необходимым, поскольку как правило, ведет к потере алгебраичности дифференциальных уравнений и ограничениям в использовании геометрических и топологических методов исследования.  [c.31]

Если гамильтониан Н зависит от координат, но удается выбрать избыточные координаты так, что все компоненты левоинвариантных полей v ( ) линейны по q, то скобка (2.13) становится обычной скобкой Ли-Пуассона, а все геометрические зависимости для избыточных переменных будут ее функциями Казимира или инвариантными соотношениями. Этого можно добиться, если воспользоваться матричной реализацией группы Ли, а в качестве избыточных кооординат выбрать компоненты ее матриц. Полученная в этом случае структура Ли-Пуассона соответствует полупрямой сумме g К , где К — пространство матриц п х п, g — алгебра Ли данной группы, и называется естественной канонической структурой кокасателъ-ного расслоения к группе Ли. Таким способом могут быть получены, например, уравнения движения твердого тела в направляющих косинусах и моментах (см. 4). Матричная реализация групп Ли используется также в динамике многомерного твердого тела [24, 31].  [c.37]


Смотреть страницы где упоминается термин Пуассонова структура и уравнения движения : [c.234]   
Смотреть главы в:

Динамика твёрдого тела  -> Пуассонова структура и уравнения движения



ПОИСК



Движение по Пуассону

Пуассон

Пуассона уравнение

Уравнения Пуассона си. Пуассона уравнение



© 2025 Mash-xxl.info Реклама на сайте