Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Солнечные коллекторы и аккумуляторы теплоты

На рис. 6.31 представлены функциональные связи между элементами системы и пояснен принцип отопления и охлаждения помещений за счет солнечной энергии. Эта система отличается от стандартных систем важной конструктивной особенностью — в ней предусмотрены солнечный коллектор и аккумулятор теплоты. Необходим также вспомогательный источник теплоснабжения для покрытия пиковой части графика нагрузки теплосети. Использование солнечных отопительных устано-  [c.151]


СОЛНЕЧНЫЕ КОЛЛЕКТОРЫ И АККУМУЛЯТОРЫ ТЕПЛОТЫ  [c.25]

Различают активные и пассивные системы солнечного теплоснабжения зданий. Характерным признаком активных систем является наличие коллектора солнечной энергии, аккумулятора теплоты, дополнительного источника энергии, трубопроводов, теплообменников, насосов или вентиляторов и устройств для автоматического контроля и управления. В пассивных системах роль солнечного коллектора и аккумулятора теплоты обычно выполняют сами ограждающие конструкции здания, а движение теплоносителя (воздуха) осуществляется за счет естественной конвекции без применения вентилятора. В странах ЕЭС в 2000 г. пассивные гелиосистемы будут давать экономию 50 млн. т нефти в год.  [c.64]

Однако в большинстве процессов приготовления пн-щи требуются более высокие температуры, которые могут быть достигнуты только при применении оптических устройств для концентрации солнечной энергии. Во. многих случаях это нерентабельно, но, без сомнения, технически возможно. В районах с сухим жарким климатом может использоваться солнечная печь с плоским коллектором солнечной энергии и аккумулятором теплоты (рис. 61). Для повышения эффективности следует исполь-  [c.116]

Горячий воздух, поступающий днем из солнечного коллектора в аккумулятор, отдает гальке свою теплоту, и таким образом происходит зарядка аккумулятора. При разрядке аккумулятора ночью или в ненастную погоду воздух движется в обратном направлении и отводит теплоту к потребителю.  [c.48]

В соответствии с рис. 46 из солнечного коллектора через теплообменник или непосредственно теплота передается в бак-аккумулятор. Циркуляция теплоносителя в контуре коллектора и аккумулятора осуществляется посредством насоса Н4 и Н5. Горячая вода из бака-аккумулятора поступает в котел, затем подается насосом Н2 в генератор, а из него — в нижнюю часть аккумулятора и через трехходовой вентиль — в котел. Этот вентиль предотвращает попадание теплоты из котла в аккумулятор. Охлаждающая вода из градирни насосом НЗ  [c.94]

Расчет солнечных установок включает определение располагаемого количества солнечной энергии, тепло-производительности солнечного коллектора и установки в целом, тепловой нагрузки отопления и горячего водоснабжения, энергетических и геометрических характеристик гелиосистемы, в том числе площади поверхности коллектора, объема аккумулятора теплоты, годовой доли солнечной энергии в покрытии тепловой нагрузки и годовой экономии топлива.  [c.125]


Теплообменник для передачи теплоты из аккумулятора к потребителю обычно имеет большие размеры по сравнению с теплообменником в контуре солнечного коллектора, и поэтому в большинстве случаев (кроме небольших установок) используются отдельные теплообменные аппараты противоточного типа.  [c.181]

Солнечные системы отопления и горячего водоснабжения. Различают активные и пассивные системы солнечного отопления (ССО). Характерным признаком активных ССО является наличие коллектора солнечной энергии (КСЭ), аккумулятора теплоты, дополнительного (резервного) источника энергии (ДИЭ), теплообменников (в двухконтурных схемах), насосов или вентиляторов, соединительных трубопроводов или воздуховодов и системы регулирования.  [c.176]

СЭУ большой мощности (рис. 4.32) состоит из четырех подсистем зеркал-концентраторов 1 солнечных лучей, коллектора-приемника 2 теплоты, аккумулятора теплоты 4 (в указанном случае), ПТУ или ГТУ 5 и системы управления 3. Теплоноситель, применяемый в СЭУ, может быть нагрет до высокой температуры при применении концентраторов различного типа. Для мощных солнечных СЭУ целесообразно применение системы зеркал-гелиостатов, располагаемых на Земле вокруг приемного коллектора. Зеркала должны автоматически поворачиваться вслед за Солнцем. Ввиду малой плотности солнечной энергии, попадающей на Землю, площади зеркал-гелиостатов получаются очень большими, например, зеркала-гелиостаты СЭУ мощностью 200 МВт должны занимать площадь около 10 км . Коллекторы-приемники теплоты для нагрева теплоносителя всегда должны находиться в фокусе зеркал, располагаясь на вершинах башен высотой до 100 — 400 м, чтобы воспринимать лучи, отраженные от всех зеркал.  [c.216]

Можно дать следующие рекомендации относительно схемного решения комбинированных солнечно-топливных установок горячего водоснабжения. Во-первых, необходимо обеспечивать улавливание максимально возможного количества солнечной энергии, что достигается снижением среднего уровня температуры теплоносителя в коллекторе и использованием эффективного коллектора. Во-вторых, следует исходить из того, что солнечная энергия должна использоваться для предварительного подогрева теплоносителя, в то время как дополнительный источник энергии (топливо или электроэнергия) — для доведения теплоносителя до требуемой температуры. При таком подходе обеспечивается максимальная экономия топлива благодаря наиболее эффективному использованию солнечной энергии. В-третьих, необходимо избегать смешения сред с различными уровнями температуры в аккумуляторе теплоты, в частности, с этой точки зрения не рекомендуется размещать электронагреватель в нижней части бака-аккумулятора или осуществлять подвод теплоты от дублера непосредственно в бак-аккумулятор гелиоустановки. Как минимум, верхняя часть бака, где размещается дублер, должна быть отделена перфорированной перегородкой от нижней, в которую подводится теплота от солнечного коллектора. Оптимальным решением является использование двух баков — одного с низкой температурой теплоносителя, обеспечиваемой солнечным нагревом, а второго с высокой температурой, обеспечиваемой дублером.  [c.62]

Активные гелиосистемы отопления зданий. В состав активной системы солнечного отопления входят коллектор солнечной энергии, аккумулятор теплоты, дополнительный (резервный) источник энергии, теплообменники для передачи теплоты из КСЭ в аккумулятор и из последнего к потребителям, насосы или вентиляторы, трубопроводы с арматурой и комплекс устройств для автоматического управления работой системы.  [c.74]

Принципиальные схемы жидкостной и воздушной систем солнечного отопления (рис. 35, а и б) содержат солнечный коллектор, аккумулятор теплоты, насосы (вентиляторы), дополнительный источник энергии, регулирующую арматуру, подающий и обратный трубопроводы (воздуховоды). На рис. 36 показан жилой дом с жидкостным солнечным коллектором на крыше. Остальное оборудование гелиосистемы отопления и горя-  [c.75]


Основное и вспомогательное оборудование гелиосистемы, включая аккумулятор теплоты, теплообменники, насосы, тепловой насос, дополнительные подогреватели для горячей воды и отопления, т. е. все, кроме солнечного коллектора, устанавливаемого на крыше, может размещаться в подвале дома или пристройке.  [c.76]

В туннельных теплицах могут использоваться плоские коллекторы солнечной энергии и грунтовые аккумуляторы теплоты с пластмассовыми трубами, проложенными в грунте для циркуляции нагретого или холодного воздуха. В одном из вариантов может быть предусмотрена система впрыска нагретой воды в теплицу, благодаря чему обеспечивается требуемый температурно-влажностный режим. По сравнению с неотапливаемой теплицей при использовании гелиосистемы температура воздуха на 3—8°С выше. Аккумулирование теплоты может осуществляться непосредственно в самой теплице в грунте или в цилиндрических капсулах с плавящимся веществом типа парафина.  [c.108]

При проектировании систем солнечного теплоснабжения расход теплоносителя и объем аккумулятора теплоты выбирают в зависимости от вида теплоносителя в контуре солнечного коллектора (жидкость или воздух) и типа теплового аккумулятора (водяного в жидкостных системах и галечного в воздушных системах).  [c.143]

Так, удельный расход (м /с) теплоносителя в КСЭ на 1 м2 площади поверхности КСЭ для жидкостных систем равен 0,01—0,02, для воздушных систем 0,005—0,02, а удельный объем (м /м ) аккумулятора теплоты равен соответственно 0,05—0,15 и 0,15—0,35. Удельная площадь поверхности солнечного коллектора в зависимости от на-  [c.143]

Теплопроизводительность солнечной установки, т. е. то количество полезной теплоты, которая поступает к потребителю за определенный период времени (час, день, месяц, год), меньше теплопроизводительности солнечного коллектора на величину тепловых потерь в трубопроводах, соединяющих коллектор с тепловым аккумулятором, в нем самом, в теплообменниках в контуре коллектора и теплового потребителя. Эти теплопотери определяются тремя величинами—коэффициентом теплопотерь (теплопередачи от теплоносителя к окружающей среде) и площадью поверхности трубопроводов, теплового аккумулятора и т. п., а также разностью температур теплоносителя и окружающей среды (как правило, наружного воздуха). На коэффициент теплопотерь сильное влияние оказывают толщина и коэффициент теплопроводности теплоизоляции. Поэтому для снижения теплопотерь все нагретые поверхности должны быть тщательно теплоизолированы.  [c.146]

Это зависит от многих факторов, в том числе от качества изготовления и монтажа установки, включая правильный выбор материалов для изготовления солнечных коллекторов, аккумуляторов теплоты, трубопроводов, качества уплотнений и т.п. Важное значение имеет выбор теплоносителя и применение соответствующих антикоррозионных добавок, соблюдение требуемых скоростей потока в трубах, предотвращение попадания кислорода воздуха, вызывающего коррозию. Срок службы также зависит от предотвращения замерзания теплоносителя в трубопроводах и других элементах оборудования, подверженных воздействии наружного воздуха. Некоторые материалы, в частности полимерные пленки, быстро стареют под действием ультрафиолетового излучения. Основной элемент гелиоустановки — солнечный коллек-  [c.195]

Описанный эффект достигается благодаря тому, что по глубине солнечного пруда поддерживается градиент концентрации соли, направленный сверху вниз, т. е. весь объем жидкости как бы разделен на три зоны, концентрация соли в которых возрастает от поверхости к дну. Верхний тонкий слой (10—20 мм) практически пресной воды граничит с неконвективным слоем жидкости большой толщины, в котором концентрация соли по глубине постепенно увеличивается и достигает максимального значения на нижнем уровне. Толщина этого слоя составляет /з общей глубины водоема. В нижнем конвективном слое концентрация соли максимальна и равномерно распределена в объеме жидкости. Итак, плотность жидкости максимальна у дна пруда и минимальна у его поверхности в соответствии с распределением концентрации соли. Солнечный пруд служит одновременно коллектором и аккумулятором теплоты и отличается низкой стоимостью по сравнению с обычными коллекторами сол-  [c.51]

Материалы для изготовления корпуса солнечного коллектора. Основными элементами активной гелиосистемы являются коллектор солнечной энергии и аккумулятор теплоты. Для изготовления этих элементов системы ис-поЛьзуются различные материалы — металлы, пластмассы, стекло, бетон, дерево, полимерная пленка, теплоизоляционные материалы, резина. Основным требованием к выбору материалов является требование совместимости конструкционных материалов с рабочими жидкостями при условиях эксплуатации. Особенностью работы солнечных коллекторов является воздействие на них внешней среды. Поэтому корпус коллектора, вмещающий такие конструктивные элементы, как лучепоглощающая поверхность с трубами или каналами для теплоносителя, остекление, тепловая изоляция, должен наделено защищать их от воздействия внешней среды, предохраняя от попадания влаги, пыли, вредных веществ.  [c.156]

В сфере сельскохозяйственного производства применение недорогих воздушных коллекторов солнечной энергии поможет решить проблему отопления животноводческих ферм. Также ц.елесообразно интенсифицировать работы по использованию солнечной энергии для отопления теплиц. Подогрев воды на фермах позволит улучшить условия труда и содержания животных. Солнечные установки отопления требуют значительных капиталовложений, которые обычно не окупаются за предполагаемый срок службы установок в 20 лет в районах, лежащих севернее 45° с. ш. Однако даже в холодном климате скандинавских стран — Швеции и Финляндии — реализованы крупномасштабные демонстрационные проекты солнечных систем теплоснабжения с применением тепловых насосов и сезонных аккумуляторов теплоты, позволяющих покрывать практически всю нагрузку отопления за счет солнечной энергии. Особенностью этих систем является аккумулирование теплоты солнечной радиации, поступающей в летний период, в больших подземных резервуарах или шахтных выработках и использование этой теплоты, а также энергии окружающей среды (грунта, грунтовых вод и т.п.) для отопления зданий в зимний период. Эти системы пока экономически нерентабельны, так как требуют больших капиталовложений. В перспективе, по мере роста цен на топливо и снижения стоимости гелиосистем и их элементов, особенно сезонного аккумулятора теплоты, появится возможность создания централизованных систем солнечного теплоснабжения с незначительным потреблением электрической и тепловой энергии.  [c.4]


В условиях холодного климата в солнечном коллекторе следует использовать незамерзающий теплоноситель— смесь воды с этилен- или пропиленгликолем, гли-зантин (смесь воды с глицерином) и др. В этом случае схема становится двухконтурной. Пример конструктивного выполнения водонагревателя с антифризом в контуре коллектора показан на рис. 24, б. Теплота, полученная незамерзающим теплоносителем в коллекторе, передается воде посредством теплообменника, размещенного в нижней части бака-аккумулятора. По санитарно-гигиеническим нормам вода должна быть надежно защищена от попадания теплоносителя, содержащего токсические вещества.  [c.56]

Дом используется для проведения исследований и оборудован гелиосистемой, тепловым насосом и теплоутили-зационными устройствами (рис. 37,6). Гелиосистема включает коллектор солнечной энергии площадью 20 м , сезонный водяной аккумулятор теплоты емкостью 40 м для отопления и бак объемом 4 м для подогрева воды. Вода, нагреваемая в коллекторе до 95 С, посредством теплообменника Т1 передает теплоту воде в аккумуляторе. Тепловой насос использует теплоту сточных вод, собираемых в баке 3 емкостью 1 м в котором размещен испаритель И теплового насоса, а его конденсатор К расположен в баке 4 вместе с электронагревателем. Тепловой насос также отбирает теплоту от грунта с помощью теплообменника Т5, расположенного под домом в земле. Тепловой насос имеет два испарителя (Я и Т5), и его коэффициент преобразования равен 3,5—4 в диапазоне температур 15—50 °С при мощности привода компрессора 1,2 кВт. С помощью насоса НЗ и трубопроводов аккумулятор теплоты соединяется с баком 4, а через него — с тепловым насосом 5 и баком 3. В доме предусмотрена вспомогательная стенка, сообщающаяся с грунтом и используемая для подогрева (зимой) и охлаждения (летом) воздуха В), поступающего в здание.  [c.81]

Гелиотопливная система теплоснабжения включает в себя следующее основное оборудование коллектор солнечной энергии, аккумулятор теплоты, теплообменники, насосы или вентиляторы, дополнительный (резервный) источник теплоты (топливный или электрический) и устройства для управления работой системы.  [c.142]

Расчет галечного аккумулятора теплоты. В системах солнечного отопления с воздушным коллектором используется галечный аккумулятор теплоты. Он также используется в пассивных системах отопления здания с пристроенной к южному фасаду гелиотеплицей (зимним садом, оранжереей). Рассмотрим метод расчета галечного аккумулятора теплоты для второго случая и заметим, что этот метод расчета одинаков для обеих систем. В слу чае пассивной системы с гелиотеплицей основное количество уловленной солнечной энергии аккумулируется в самой теплице, и не более 7з всей получаемой за день полезной солнечной энергии должно аккумулироваться в галечном аккумуляторе теплоты. При большем количестве аккумулируемой теплоты требуется увеличение расхода воздуха, а это может привести к нежелательным колебаниям температуры в гелиотеплице.  [c.151]

При перегреве аккумулятора теплоты возможно образование пара, для предотвращения повыщения давления предусматривается предохранительный клапан. Для автоматического удаления воздуха из контура солнечного коллектора в верхней точке должен быть расположен воздушник. Все материалы должны выдерживать максимальные температуры, которые могут иметь место при холостом ходе (без теплоносителя) коллектора. Это отно-носится к материалам тепловой изоляции и деталям корпуса, соприкасающимся с лучепоглощающей поверхностью, температура которой может достигать 170—250 С в зависимости от типа коллектора.  [c.199]


Смотреть страницы где упоминается термин Солнечные коллекторы и аккумуляторы теплоты : [c.80]    [c.30]    [c.57]    [c.102]    [c.103]    [c.150]    [c.176]    [c.117]    [c.82]   
Смотреть главы в:

Индивидуальные солнечные установки  -> Солнечные коллекторы и аккумуляторы теплоты



ПОИСК



Аккумулятор теплоты

Аккумуляторы

Коллектор



© 2025 Mash-xxl.info Реклама на сайте