Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поглощение звука. Влияние вязкости и теплопроводности среды

Поглощение звука. Влияние вязкости и теплопроводности среды. Ослабление силы звука при увеличении расстояния ОТ источника происходит, однако, не только благодаря рас-  [c.80]

Поглощение звука. Влияние вязкости и теплопроводности среды. Ослабление силы звука при увеличении расстояния от источника происходит, однако, не только благодаря распределению энергии в большем объеме из-за геометрических причин. Звуковые волны постепенно теряют свою энергию благодаря их поглощению. Если звуковая волна движется в неограниченной среде, то поглощение обусловлено прежде всего вязкостью воздуха, или, иначе, действием внутреннего трения, испытываемого частицами воздуха при их движении, вызываемом прохождением волны при этом часть энергии звука превращается в тепло.  [c.83]


Искажение плоской волны в случае малых чисел Рейнольдса рассмотрено в [28] для сред с малой дисперсией скорости. Решение уравнений гидродинамики приводит в этом случае во втором приближении к уравнению биений в пространстве. Этот результат вполне естествен, так как в результате дисперсии скорости фа.ча второй гармоники изменяется в пространстве относительно фазы первой гармоники. Этот сдвиг фазы, меняющийся в пространстве (отсутствие синхронизма), сначала, если бы не было релаксационного поглощения, приводил бы к замедлению роста амплитуды гармоники, затем к прекращению его и, наконец, к падению амплитуды второй гармоники. Однако одновременно с дисперсией скорости на величину второй гармоники будут оказывать влияние диссипативные процессы, связанные с теплопроводностью и вязкостью (как сдвиговой, так и объемной). Как показано в [28], даже учет одной только объемной вязкости приводит к тому, что характер изменения амплитуды второй гармоники из-за малой дисперсии в основном определяется поглощением звука.  [c.132]

Вязкость и теплопроводность среды играют примерно одинаковую роль в поглощении звука, хотя влияние вязкости несколько больше. Влияние теплопроводности становится более значительным, когда звук распространяется вдоль твёрдой стенки в этом случае имеют место более заметные перепады в значениях температуры соседних элементов воздуха, а также воздуха и стенки.  [c.83]

Заметим, что имеется некоторая непоследовательность в наших рассуждениях — занимаясь изучением влияния вязкости и теплопроводности на поглош,ение звука, мы, тем не менее, пользуемся соотношениями, которые справедливы для идеальной среды. Использование этих соотношений возможно лишь при малом влиянии вязкости и теплопроводности на распространение звука, т. е. когда поглощение звука на расстоянии, равном длине волны X, мало и аЛ< 1. В большом числе акустических задач это условие выполняется.  [c.40]

Обращаясь теперь к выводу основных уравнений акустики движущейся среды, мы будем игнорировать влияние вязкости и теплопроводности среды на распространение звука. Это влияние удобнее может быть учтено особо, как поправка, и ведет к уже рассмотренному выше поглощению звука. Однако роль этих факторов, определяющих необратимые процессы в гидродинамике, может быть весьма сущес1венна в образовании исходного состояния среды, в которой распространяется звук. Не менее существенно в этом же отношении действие силы тяжести Поэтому в основу теории распространения звука в неод нородной и движущейся среде следует положить общие уравнения двин ения сн имаемой жидкости.  [c.28]


На фпг. 123 приведены аналогичные результаты для поглощения звука в пресной и морской воде [40]. Для пресной воды измеренные значения поглощения в 2,5 раза больше, чем вычисленные с учетом соотношения (5.21) и теплопроводности. Полученное расхождение объясняется влиянием объемной вязкости, механизм которого рассматривается в статье Холла [41 ], а также во втором томе данной серии (в главе, написанной Литовицем), Увеличение поглощения в морской воде связано с релаксационными эффектами, обусловленными главным образом присутствием в воде Мд304, Наряду с рассмотренными причинами, влияющими на распро-страиепие волн в свободном пространстве или в ограниченной среде на высоких частотах, существует еще один источник поглощения энергии, имеющий место в трубах иа низких частотах, кото-Р1.1Й дает существенно большие потери, чем потери, связанные с вязкостью и теплопроводностью среды. Поглощение в узких трубах объясняется тем, что газ или жидкость пе скользит вдоль стенок трубы, а образует пограничный слой очень малой толщины. Этот слой между стенкой и движущейся жидкостью характерен тем, что в пем распространяются вязкие сдвиговые волны. Эти волны [12, 38] создают комплексное сопротивление движению, равное  [c.426]


Смотреть страницы где упоминается термин Поглощение звука. Влияние вязкости и теплопроводности среды : [c.75]   
Смотреть главы в:

Звуковые волны Издание 2  -> Поглощение звука. Влияние вязкости и теплопроводности среды

Звуковые и ультразвуковые волны Издание 3  -> Поглощение звука. Влияние вязкости и теплопроводности среды



ПОИСК



Влияние pH среды

Влияние вязкости

Вязкость и теплопроводность

Вязкость среды

Поглощение

Поглощение звука

Теплопроводность влияние на поглощение звука



© 2025 Mash-xxl.info Реклама на сайте