ПОИСК Статьи Чертежи Таблицы Поглощение звука. Влияние вязкости и теплопроводности среды из "Звуковые и ультразвуковые волны Издание 3 " Поглощение звука. Влияние вязкости и теплопроводности среды. Ослабление силы звука при увеличении расстояния от источника происходит, однако, не только благодаря распределению энергии в большем объеме из-за геометрических причин. Звуковые волны постепенно теряют свою энергию благодаря их поглощению. Если звуковая волна движется в неограниченной среде, то поглощение обусловлено прежде всего вязкостью воздуха, или, иначе, действием внутреннего трения, испытываемого частицами воздуха при их движении, вызываемом прохождением волны при этом часть энергии звука превращается в тепло. [c.83] Поглощение звука зависит пе только от вязкости воздуха, но и от его теплопроводности. Напомним прежде всего, что такое теплопроводность. [c.84] Если различные части тела, например металлического стержня, имеют разную температуру, то тепло переходит от более горячих частей тела к более холодным. Такой перенос тепла называется теплопроводностью ). [c.84] Для того чтобы объяснить, как может влиять теплопроводность на поглощение звука, рассмотрим вертикальный цилиндр с находящимся в нем газом. В цилиндре ходит без трения хорошо пригнанный поршень. Положим на поршень небольшой груз при этом произойдет сжатие газа. Это сжатие будет происходить с какой-то конечной скоростью. Благодаря тому что давление в тазе распространяется не мгновенно, давление непосредственно под поршнем будет выше, чем в остальном газе. Так как при сжатии газ нагревается, температура газа непосредственно под поршнем будет выше, чем в остальном газе. Возникает разность температур газа в цилиндре и в окружающей среде, и часть тепла через теплопроводящие стенки цилиндра отводится в окружающую среду. Кроме того, при быстром сжатии газа часть работы затрачивается па преодоление внутреннего трения (вязкости) в газе. При бесконечно медленном сжатии указанные процессы не происходят и работа совершается без потерь. Поэтому сжатие газа с конечной скоростью требует большей работы, чем бесконечно медленное сжатие. Теперь снимем с поршня груз произойдет расширение газа с конечной скоростью. Давление газа на поршень и температура его непосредственно под поршнем будут ниже, чем в остальном газе, и меньше, чем при бесконечно медленном расширении. Поэтому по сравнению с бесконечно медленным расширением газ совершит меньшее количество работы. [c.84] Отсюда следует, что сжатие и расширение газа, происходящие с конечной скоростью, представляют собой необратимые процессы, сопровождающиеся потерей энергии, так как работа, которую следует приложить к системе (поршню и находящемуся под ним газу) для сжатия до какого-то определенного объема, будет больше, чем работа, полученная от системы при расширении до этого же объема. Благодаря теплообмену между стенками цилиндра и окружающей средой при сжатии газа с конечной скоростью в окружающую среду выходит большее количество тепла, чем приходит тепла в систему при ее расширении. [c.85] Если заставить поршень совершать в цилиндре колебания, указанные потери приведут к тому, что на поддержание незатухающих колебаний потребуется определенный расход энергии в противном случае колебания затухнут. [c.85] При распространении звуковых волн соседние слои воздуха (или жидкости, твердого тела) сжимаются и расширяются с конечной скоростью. Появляющаяся разность температур между слоями сжатия и разрежения вызывает благодаря теплопроводности теплообмен и выравнивание температуры. Так как при сжатии элемента объема в окружающую среду входит больше теплоты, чем возвращается к нему от среды при его расширении, происходит нагревание среды, т. е., другими словами, потеря энергии звуковых волн, идущая на увеличение средней температуры воздуха (среды), — поглощение энергии звуковых волн. [c.85] Мы говорили выше, что процесс распространения звука является адиабатическим, т. е. что разность температур между слоями сжатия и разрежения не успевает выравниваться за полупериод звуковой волны. Но это значит, что при чисто адиабатическом процессе никакого поглощения звука за счет теплообмена происходить не должно. Так и было бы в действительности, если бы не теплопроводность. Теплопроводность нарушает адиабатический характер распространения звука и приводит к дополнительному поглощению энергии звука за счет теплообмена. [c.85] Следует, однако, указать, что отклонения от адиабатичности звука практически настолько незначительны, что они не вносят существенных изменений в значение скорости звука, и все то, о чем мы говорили выше, в 2 этой главы. [c.85] Вязкость и теплопроводность воздуха играют примерно одинаковую роль в поглощении звука, хотя влияние вязкости несколько больше. Влияние теплопроводности становится более значительным, когда звук распространяется вдоль твердой стенки в этом случае имеют место более заметные перепады в значениях температуры соседних элементов воздуха, а также воздуха и стенки. [c.86] Вернуться к основной статье