Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Торцовое уплотнение гидродинамическое гидростатическое

В качестве подходящего, т. е. отвечающего требованиям эксплуатации на АЭС и наиболее перспективного типа уплотнения вращающегося вала в ГЦН для АЭС, может рассматриваться только торцовое уплотнение. Принципиальное его отличие от уплотнения с радиальным зазором заключается в том, что торцовая уплотняющая щель является плоской, тогда как радиальная имеет цилиндрическую форму. Предпочтение плоской (торцовой) щели по сравнению с цилиндрической (радиальной) отдано потому, что технологически очень трудно обработать цилиндрические круговые поверхности с отклонением в несколько микрон, и с увеличением диаметра эти трудности возрастают. Плоские поверхности с необходимой точностью могут быть сравнительно легко получены притиркой, а их неплоскостность может быть доведена до долей микрона даже при больших диаметрах уплотнений. Поэтому при высоком давлении и прочих равных условиях торцовая щель в подвижном контакте всегда будет герметичнее радиальной щели. Кроме того, величину торцовой щели относительно просто регулировать с помощью гидростатических и гидродинамических элементов конструкции, так как при осевых перемещениях ее поверхности смещаются в основном параллельно, не изменяя существенно формы зазора, в то время как в радиальной щели форма зазора при смещении цилиндрических поверхностей меняется.  [c.76]


По величине рабочего зазора, а также по принципу его поддержания торцовые уплотнения делят на гидростатические и гидродинамические.  [c.77]

Системы, обслуживающие гидростатические торцовые уплотнения, представляют собой нечто среднее между системами, питающими уплотнения с плавающими кольцами и гидродинамические торцовые уплотнения. Это обусловлено тем, что протечки через гидростатические уплотнения (0,5—1,5 хотя и малы по  [c.111]

Область применения гидростатических уплотнений приблизительно совпадает с областью применения гидродинамических торцовых уплотнений, однако является более узкой. Это в основном уплотнения циркуляционных и питательных насосов атомных и тепловых электростанций, а также уплотнения валов крупных турбокомпрессоров.  [c.303]

Механические уплотнения [35, 36, 67, 96—105] имеют кольцевой уплотнитель в виде детали или пары трения из металла, углеграфита, керамики, пластмассы и других твердых тел. Контактные поверхности пары должны иметь ничтожное отклонение от заданной формы, чтобы при соприкосновении поверхностей зазор был очень мал. Наиболее точно могут быть обработаны плоские или цилиндрические поверхности, что определяет деление этих уплотнений на две группы радиальные и торцовые УВ. Название механические уплотнения связано с характером производства этих уплотнений на механических заводах. Радиальные уплотнения для УПС называют поршневыми кольцами, так как большинство их применяют в качестве УПС поршней двигателей и компрессоров. Торцовые УПС применяют чаще всего в гидростатических и гидродинамических опорах поршней насосов и гидромашин (их называют также башмаками). Механические уплотнения могут одновременно выполнять функции опор и уплотнений. Например, радиальные (цапфенные) и торцовые распределители гидромашин. Эксплуатационные характеристики торцовых УВ (см. рис. 1.4, 1.6, г) отличаются большим диапазоном допускаемых давлений, скоростей и температур (кривые 7 на рис. 1.4) при удовлетворительной герметичности [Q а 10 ... 1 мм Дм - с)] и большой  [c.17]

ГЦН фирмы Alstrem (см. рис. 3.33) в качестве замыкающей концевой ступени используется гидродинамическое торцовое уплотнение. Эта ступень, работающая при перепаде давления 0,5—1 МПа, может воспринимать и полное давление запирающей воды кратковременно при работе ГЦН, и длительно при стоянке насоса (например, при гидроиспытаниях насоса и его систем). Неподвижное кольцо 8 уплотнения изготовлено из нержавеющей стали с напылением окиси хрома. На его поверхности имеется двенадцать серповидных канавок шириной 2,5 и глубиной 2 мм. Подвижное графитовое кольцо 7 плотно посажено в аксиально-подвижную обойму 6. которая прижимается к неподвижному кольцу десятью пружинами 5 диаметром 7 мм и длиной 55 мм. Уплотнение обоймы 6 по внутреннему диаметру осуществляется резиновыми кольцами 9 диаметром 5 мм. Показательна в данном случае и конструкция уплотнения ГЦН, спроектированного во ВНИИАЭН (рис. 3.36). В нем вместе с основным двухступенчатым гидростатическим уплотнением и концевой гидродинамической ступенью 5 встроена контурная ступень 9 с плавающими кольцами [34].  [c.84]


Фирма KSB в циркуляционном насосе RSR применила перевернутую схему охлаждения гидродинамического подшипника (рис. 4.16). Запирающая вода сначала подается в гидродинамический подшипник, затем под гидростатическое торцовое уплотнение 5 и в виде организованных протечек возвращается в систему запирающей воды. В этом случае должен быть достаточно эффективен термобарьер 1. Иначе возможно захолаживание первого контура протечками по зазору между валом 4 и термобарьером 1.  [c.118]

Отработка торцовых уплотнений для ГЦН с контролируемыми протечками. Методика отработки гидростатических и гидродинамических торцовых уплотнений достаточно полно изложена в [38, 42, гл. 3]. Здесь остановимся лищь на некоторых особенностях отработки гидродинамического торцового уплотнения с малыми протечками (не более 0,05 м ч). Главной проблемой при конструировании такого уплотнения, как уже упоминалось ранее, является обеспечение во всех режимах работы стабильной жидкостной смазывающей пленки в уплотняющем подвижном контакте, что гарантирует безызносный режим трения. Это оказалось непосредственно связано со стабильностью макрогеометрии уплотняющих поверхностей, независимо от применяемых материалов [9, 10]. Задача стабилизации макрогеометрии оказалась чрезвычайно трудной потому, что основу работоспособности торцовых уплотнений составляет контактирование оптически плоских поверхностей. При этом значение рабочего зазора лежит в пределах от долей микрона до нескольких микрон, и нарушение макрогеометрии даже на несколько микрон приводит к существенному изменению характеристики уплотнения. При достижении некоторого предела это нарущение вызывает выход уплотнения из строя. Между тем термические и силовые деформации деталей, образующие контактирующие поверхности, и деталей, соприкасающихся с ними, в условиях высоких давлений и переменных температур, а также больщих диаметров, характерных для уплотнения ГЦН АЭС, составляют сотни микрон, т. е. превышает рабочий зазор в сотни и даже в тысячи раз. Таким образом, конструкция уплотнений должна быть такой, чтобы эти гигантские по сравнению с рабочим зазором перемещения деталей не приводили к искажению рабочих поверхностей даже на несколько микрон. Выяснение указанных обстоятельств предопределило принципиальный подход к методике отработки уплотнения вала (см. рис. 3.34) для модернизированного насоса реактора РБМК. При выборе материала для рабочих колец, образующих уплотняющие поверхности, было учтено, что лучшие результаты при испытаниях и эксплуатации показывали силицированные графиты, несколько модификаций которых прошли испытания на первом этапе на спе-  [c.238]

Зазоры в работающих торцовых уплотнениях различны (для обыкновенных пар трения 0,5-2 мкм для гидродинамических - более 2 мкм для гидростатических — более 5 мкм), поэтому механизмы герметизащ1И этих пар трения также различны. В зазорах обыкновенных пар трения происходит контакт микронеровностей трущихся поверхностей и, как следствие этого, их изнашивание. В гидродинамических парах трения трущиеся поверхности разделены слоем жидкости, контакты микронеровностей сравнительно малочисленны и носят случайный характер. В гидростатических парах трения контакты микронеровностей отсутствуют и наблюдается чисто гидродинамический режим смазки.  [c.248]

Гидродинамические и гидростатические торцовые уплотнения работают в режиме жидкостной (газовой) смазки, поэтому их называют бесконтактными. Эти уплотнения применяют при высоких перепадах давлений и скоростях скольжения, а также при герметизации сред с плохими смазывающими свойствами газы, кипящие и криогенные жидкости). Гидродинамические и гидростатические уплотнения успешно эксплуатируют при перепаде давлений до 28 МПа, скорости скольжения до 185 м/с на валах диаметром до 1500 мм. Бесконтактные торцовые уплотнения используют в турбонасосах высокого давления ЖРД, компрессорах авиационных двигателей, циркуляционных насосах АЭС, питательных насосах энергетических систем, турбинах гидроэлектроустановок и других машинах.  [c.265]


Смотреть страницы где упоминается термин Торцовое уплотнение гидродинамическое гидростатическое : [c.161]    [c.80]    [c.239]    [c.18]   
Главные циркуляционные насосы АЭС (1984) -- [ c.79 ]



ПОИСК



1---для торцовых уплотнений

В В гидростатическое

Да гидродинамическое

Уплотнения гидростатических

Шаг торцовый



© 2025 Mash-xxl.info Реклама на сайте