Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Углерод-углеродные композиты

Среди современных конструкционных материалов важное место занимают материалы на основе углерода искусственные графиты различных марок, углепластики, углерод—углеродные композиты. Томограммы на рис. 23 й 24 иллюстрируют возможности- со-  [c.457]

Углерод-углеродные композиты. Углерод-углеродные композиционные материалы — такие материалы, матрица и наполнитель которых состоят из углерода. В качестве наполнителя применяют углеродные волокна, ленты и ткани углеродными матрицами могут быть коксы пеков, синтетических смол, пироуглерод [81).  [c.50]


Технология получения углерод-углеродных композитов включает в себя  [c.50]

Метод карбонизации углепластика сравнительно прост, он не требует сложной аппаратуры, обеспечивает хорошую воспроизводимость свойств получаемого материала. Однако необходимость многократного проведения операций уплотнения значительно удлиняет и удорожает процесс получения изделий из углерод-углеродных композитов.  [c.52]

Углерод-углеродные композиты содержат углеродный армирующий элемент в виде дискретных волокон, непрерывных нитей или жгу-  [c.160]

По характеру свойств УУКМ относится к композитам с керамической матрицей, но отличается способом получения Армирующая часть углерод-углеродного композита находится в частично кристаллической форме графита, матричная часть обычно аморфна. В отличие от большинства композитов с керамической матрицей при высоких температурах этот материал подвержен окислению. Чтобы предохранить его от окисления, на поверхность обьино наносят тонкий слой керамики.  [c.162]

Рис. 13.3. Основные свойства углерод-углеродных композитов в зависимости от температуры Рис. 13.3. <a href="/info/347408">Основные свойства</a> углерод-углеродных композитов в зависимости от температуры
Изделия из однонаправленно-, перекрестно- и хаотически армированных углерод-углеродных композитов получают карбонизацией углепластиков при температ ре около ЮОО°С или уплотнением пористой углеродной матрицы с помощью повторяющихся процессов пропитки волокон термореактивными смолами с последующей карбонизацией.  [c.164]

Основные методы получения углерод-углеродного композита включают высокотемпературную обработку углепластиков и нанесение на углеродный волокнистый наполнитель пироуглерода, образующегося при разложении углеводородов. Существуют жидкофазный, газофазный и комбинированный способы получения УУКМ.  [c.164]

Углерод-углеродные композиты  [c.321]

Использование теплозащитных экранов и вкладышей сопл, изготовленных из композитов, для космических аппаратов является одним из наиболее обычных их применений. Во многих случаях используют углерод-углеродные композиты, но из-за ограничений, наложенных на распространение информации по углерод-углеродным композитам, они не будут обсуждаться в данной книге.  [c.561]

УГЛЕРОД-УГЛЕРОДНЫЕ КОМПОЗИТЫ  [c.64]

Графиты, углепластики, углерод, углеродные композиты ПО 160 190 240 330 370 870 1200 1500  [c.124]

На основе углеродных волокон делают различные углепластики, в том числе, и самый теплостойкий композит - углерод-углеродный, в котором матрицей, склеивающей углеродные волокна, слу жит практически чистый углерод. Более подробно глерод-углеродные композиты будут рассмотрены в гл. 13.  [c.133]


Под материалами второго класса обычно подразумеваются о.ц.к. тугоплавкие металлы, главным образом вольфрам, молибден, титан и ниобий, а также конструкционные керамики в виде композитов керамика—металлическая матрица. В эту же категорию попадают углерод-углеродные композиционные материалы (УУКМ).  [c.287]

Низкие тепловая и эрозионная стойкости, а также некоторые другие недостатки полимерных композитов, в основном, определяются полимерной матрицей. Качественно новый уровень свойств материала позволяет получить карбонизация полимерной матрицы, реализуемая при образовании углерод-углеродных композиционных материалов (УУКМ), представляющих собой систему углеродное волокно — углеродная матрица. Углеродная матрица, подобная по физико-механическим свойствам углеродным волокнам, позволяет наиболее полно реализовать в композите уникальные свойства углеродного волокна.  [c.38]

Структурные схемы пространственно армированных композитов. Зависимость свойств углерод-углеродных композиционных материалов (УУКМ), как и других волокнистых композитов, от расположения (ориентации) волокнистых армирующих элементов (арматуры) делает решение вопроса оптимального выбора типа и схемы армирования одним из основных при разработке деталей различного назначения.  [c.64]

Настоящая книга является одним из 8 томов энциклопедического издания Композиционные материалы . В ней рассматриваются Практически все аспекты исследования внутренних поверхностей раздела в полимерных композитах, армированных традиционными стекловолокнами, а также борными и углеродными волокнами. Читатель найдет в книге описание современных методов исследования поверхностей раздела, анализ основных теорий аппретирования и адгезии полимерных матриц к упрочнителям. Впервые опубликованы сведения о химии поверхности высокомодульных и высокопрочных волокон бора и углерода и химии поверхности раздела в армированных ми композитах.  [c.4]

Как указывалось выше, для автоэмиссии наиболее важным фактором является расположение волокон в композите. Кроме того, расположение волокон существенно влияет на механические свойства углерод-углеродных композитов. Из анализа рис. 1.32 следует, что расположение волокон под углом более 5° к продольной оси укладки приводит к резкому падению прочности. Для предотвращения снижения прочности целесообразно расположение волокон в отдельных слоях под углом в пределах 15—20°.  [c.54]

Первые стадии производства углерод-углеродного композита аналогичны изготовлению композита с полимерной матрицей. Углеродные волокна пропитывают фенолформальдегидной смолой, т.е. термореактивной смолой. Затем соответствующим образом собранные и пропитанные смолой волокна нафевают в инертной атмосфере. При этом происходит пиролиз смолы (обугливание, аналогичное процессу превращения дерева в древесный уголь) и остается углерод. Полученный композит снова под давлением пропитывают смолой и подвергают пиролизу. В результате многократного повторения процесса образуется прочный материал с минимальным числом внутренних пустот.  [c.164]

Углерод-углеродные композиты обладают высокой радиационной стойкостью. Поскольку они по своим прочностным характеристикам превосходят все известные марки реакторных графитов, пpeд тaвJ яeт я перспективным их применение для узлов активной зоны высокотемпературных газоохлаждаемых реакторов. Их применение позволяет значительно повысить надежность работы реактора.  [c.165]

Углерод-углеродные композиты широко используют в медицине для изготовления армирующих пластинок для соединения костей при переломах, изготовления сердечных клапанов, имплантации зубов. Эти материалы характеризуются биосовместимостью с тканями человека, прочностью, гибкостью, легкостью. Они отлично приживаются, не давая нежелательных реакций. Например, стержни тазобедренных суставов из УУКМ, разработанные в Германии, обладают высокой усталостной прочностью и заданной деформацией. Французская фирма СЕМ выпускает композиты сложного состава УУКМ+керамша ( био-карб ),сочетающие биологические свойства углерода, биомеханические и трибологические свойства керамики для изготовления зубных протезов.  [c.165]

Из всех материалов, предназначенных для работы при высоких температурах, наивысшую температурную стойкость имеют углерод-углеродные композиты (УУК), представляющие собой углеродо-графитовую матрицу, армированную графитовыми волокнами. УУК в настоящее время применяются для изготовления деталей соплового аппарата ракет одноразового применения и элементов конструкции крылатых ракет, а также тормозных колодок авиационных газовых турбин из УУК с покрытием из Si изготавливается носовой обтекатель и испытывающие сильный нагрев кромки плоскостей космического корабля многоразового использования "Спайс Шатл".  [c.321]


Наиболее перспективным видом армирования углерод-углеродных композитов конструкционного назначения является многонаправленное, пространственное армирование, когда армирующие компоненты располагаются в трех, четырех и более направлениях. Такие образования называют пространственными армирующими структурами (ПАС), а составляющие их компоненты — элементами пространственных армирующих структур (ЭПАС).  [c.65]

Особенности свойств трехмерно-армированных (ЗД) углерод-углеродных композитов. О преимуществах и недостатках углерод-углеродных материалов ЗД по сравнению с обычными традиционными полимерными материалами аналогичной структуры можно судить по данным табл. 9.18. Эти данные получены на пространственно армированных материалах, каркас которых был создан системой трех вза имно ортогональных волокон [10]. В качестве арматуры для их изготовления использовали жгуты углеродны волокон с модулем упругости 2Х X 10 МПа и прочностью 3-10 МПг. Материалы, изготовленные на основе  [c.292]

Из сравнения характеристик материалов типа I (табл. 9.20) следует, что равномерное распределение волокон по трем ортогональным направлениям является наиболее предпочтительным для формирования свойств углерод-углеродных композитов. Их модули упругости и сдвига значительно выше, чем у материалов с неравномерным распределением. Положительное влияние на эти характеристики оказывает и повторная графити-зация (см. табл. 9.20, тип 2 и тип 1Б). Сопоставление расчетных и экспериментальных значений чтих материалов [ 8] свидетельствует о хорошем согласовании расчетных и экспериментальных значений модулей сдвига композитов, изготовленных по обычной технологии методом пропитки каменноугольным пеком. Для модулей упругости имеет место заметное превышение  [c.294]

Особенностью материалов из углеволокнитов на основе фенолоформальде-гидных смол является возможность их карбонизации при высоких температурах с высоким выходом кокса. Они могут использоваться для изготовления углерод-углеродных композитов как устойчивые к абляции теплозащитные покрытия, работающие при высоких температурах в газовых потоках.  [c.784]

Широко используются карбоволокниты с углеродной матрицей (углерод-углеродные композиционные материалы). Коксованные материалы получают из обычных карбопластиков, подвергнутых пиролизу в инертной или восстановительной атмосфере. При температурах 800-8-1500 °С образуются карбонизированные, а при 2500-ь3000 °С -графитированные карбоволокниты. Для получения пироуглеродных материалов упрочнитель выкладывается по форме изделия и помещается в печь, куда пропускается метан. В печи метан разлагается и образуется пиролитический углерод, который осаждается на волокнах упрочнителя, связывая их. Прочность углерод-углеродных композитов в 5+10 раз превосходит прочность специальных графитов, которые композиты и заменяют.  [c.421]

Наиболее широкое применение в технике получили композиты, армированные высокопрочными и высокомодульными непрерывными волокнами. К ним относят полимерные композиты на основе термореактивных (эпоксидных, полиэфирных, полиимидных и др.) и термопластичных связующих, армированных стеютянными (стеклопластики), углеродными (углепластики), органическими (органопластики), борными (боропластики) и другими волокна.ми металлические композиты на основе сплавов А1, Mg, Си, Ti, Ni, Сг, армированных борными, углеродными или карбидкремниевыми волокна.ми, а также стальной, молибденовой или вольфрамовой проволокой композиты на основе углерода, армированного углеродными волокнами (углерод-углеродные материалы) композиты на основе керамики, ар.мированные углеродными, карбидкремниевыми и другими жаростойкими волокнами.  [c.13]

Развитие техники требует механически прочных и термостойких материалов. Композиты с металлической матрицей в большинстве случаев не обладают достаточной удельной прочностью, а композиты с полимерной матрицей, имея высокие удельные механические характеристики, значительно разупрочняются при воздействии высоких температур. Поэтому особый интерес представляют керамические (ККМ) и углерод-углеродные (У У КМ) композиционные материалы, которые ю-гут стабильно работать даже при телгпературах, превышающих температуру плавления металлической матрицы.  [c.155]

Максимальная полезная нагрузка при переводе на геостационарную орбиту 3000 кг. / — ТРТ (90% твердых компонентов+ПБКГГ/ЦТМТН. горение по торцевой поверхности) 2 — корпус из кевлар-эпоксидного композита (цилиндрический с полусферическими днищами) 3 —шарниры и тяги системы развертывания сопла 4 — разворачиваемый газом сопловой насадок 5 — углерод-углеродные раструбы сопла 6 — узел поворота сопла 7 —  [c.240]

Наряду со стекловолокном основными упрочнителями композитов являются углеродные (графитовые) волокна, нитевидные кристаллы и волокна нз высокопрочных металлов, таких, как бор. Эти волокна менее чувствительны к воде, чем стеклянные, уже потому, что они не так гидрофильны. Вайетт и Эшби [78] сравнивали действие воды на полиэфирные композиты, армированные волокнами углерода и Е-стекла. В обоих случаях наблюдалось набухание смолы, однако интенсивно ра сслаивался только стеклопластик. Предполагалось, что волокна из металлов или из окислов металлов не более гидрофильны, чем кварц, а, как уже отмечалось [2], кварцевые волокна не расслаиваются при выдержке композита в воде. Тем не менее металлы и окислы металлов (в отличие от углерода) подвержены коррозии под напряжением [76]. Очевидно, накопление воды на поверхности раздела между окислом металла и полимером, которое является следствием гидрофильного загрязнения, приводит к образованию дефектов и разрыву волокна.  [c.115]

Композиты, представляющие интерес для автоэмиссии, — материалы на основе углеродных волокнистых наполнителей с матрицами различной природы проводящими (металл, углерод) или диэлектриками (стекло, керамика). Автоэмиссионные свойства материала обеспечивают углеродные волокна, а матрица играет лишь роль механического носителя, придающего дополнительные свойства. Например, теплопроводность, электропроводность, электросопротивление. Набор этих свойств определяет конкретное назначение и конструкцию автокатода.  [c.50]

Может показаться, что композиты - это неоправданно сложные стр кт ры. Однако элементы с задатками идеальных конструкционных материалов находятся, что называется, под рукой - в центральной части периодической системы. Эти элементы, среди которых углерод, алюминий, кремний, азот и кислород, образуют соединения с прочными стабильными связями. Такие соединения, типичными представителями которых являются керамические материалы, например, оксид алюминия (основа рубинов и сапфиров), карбид кремния и диоксид кремния (главный компонент стеюта), обладают высокой прочностью и жесткостью, а также теплостойкостью и устойчивостью к химическим воздействиям. Они имеют низк)то плотность, а составляющие их элементы широко распространены в природе. Один из элементов - углерод - имеет такие же хорошие свойства и в свободном состоянии - в форме углеродного волокна.  [c.55]



Смотреть страницы где упоминается термин Углерод-углеродные композиты : [c.413]    [c.165]    [c.58]    [c.282]    [c.176]    [c.154]    [c.420]    [c.219]   
Смотреть главы в:

Композиционные материалы  -> Углерод-углеродные композиты



ПОИСК



Композит

Углерод

Углеродные композиты

Углерод— углерод



© 2025 Mash-xxl.info Реклама на сайте