Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аппаратура для испытания на усталость

А. АППАРАТУРА ДЛЯ ИСПЫТАНИЯ НА УСТАЛОСТЬ  [c.260]

Аппаратура для испытания на усталость  [c.261]

В книге обобщены результаты работ по созданию комплекса научного оборудования для программных испытаний на усталость. Приведены характеристики усталости, определяемые с помощью программных испытательных машин, дано обоснование основных требований, предъявляемых к таким машинам, а также методов составления испыта гельных программ по данным статистической обработки информации об эксплуатационной нагруженности деталей. Основное внимание уделено динамическому исследованию программных испытательных машин, программирующих и стабилизирующих устройств, командной и исполнительной аппаратуры.  [c.2]


В ЦНИИТМАШе [171] для проведения испытаний на малоцикловую усталость при бигармоническом цикле создан модернизированный гидравлический пульсатор. В гидравлической схеме пульсатора предусмотрена аппаратура, позволяющая нагружать поршень цилиндра повторной малоцикловой нагрузкой, кроме пульсирующей высокочастотной нагрузки от дифференциального цилиндра.  [c.181]

Полупроводниковая аппаратура очень широко используется для наблюдения за ростом трещины при исследовании коррозии под напряжением и усталости, когда скорость роста трещины составляет порядка 1 мм/ч. В этих случаях калиб.-ровка аппаратуры относительно проста, поскольку можно прервать процесс роста трещины на любой стадии и измерить ее длину, которая в данный момент времени соответствует снижению потенциала в направлении, поперечном к поверх-, ностям трещины. Однако в настоящей работе было в общем невозможно остановить трещину до полного разрушения испытываемого образца. Поэтому калибровка образцов производилась с использованием тонких надрезов, представляющих собой эквивалентные длины трещин. Иногда было возможно получить остановку трещины при испытаниях на трехточечный изгиб, используя жесткую нагружающую систему, но и то обычно только после прохождения трещиной большей части ширины образца. В дополнение к статической калибровке на образцах, содержащих надрезы различной глубины, выполняется динамическая калибровка с использованием импульсного генератора, электрически. моделирующего быстрый рост трещины.  [c.178]

Помимо рассмотренных и ряда не нашедших освещения в данной главе приборов, аппаратов, установок и методов, применяемых при изучении различных видов эрозионного разрушения, существует еще множество косвенных методов, использующих оригинальную аппаратуру для установления характеристик металлов и среды в процессе эрозии. Сюда относятся установки и методы испытания на термическую усталость очень широкий класс приборов и установок для определения прочностных характеристик металлов и сплавов при высоких и сверхвысоких температурах разнообразная аппаратура для определения теплофизических констант металлов, особенно при высоких температурах методы определения прочности сцепления эрозионно-стойкого покрытия с основным металлом высокочастотная аппаратура для получения весьма высоких температур аппаратура для изучения свойств материалов в вакууме и при сверхвысоких давлениях различные установки для изучения гидродинамических, газодинамических и электродинамических процессов и многое, многое другое.  [c.130]


Машины для испытаний на усталость при переменном изгибе со статическим растяжением типа П391С, НУМ-1 нуждаются в специальной силовой тарировке в связи с эффектом уменьшения прогиба изогнутого образца при приложении растягивающей силы. Сложность аппаратуры для тарировки, (осциллограф, токосъемник, высокотемпературные датчики), низкая стойкость датчиков при переменных напряжениях выше 200—250) (20— 25 кГ ммР), сложность расчета или замера прогиба в работе ограничивают их применение главным образом областью сравнительных испытаний.  [c.141]

По техническому заданию лаборатории высокотемпературной металлографии Института машиноведения Фрунзенский зафд контрольно-измерительных приборов осуществил разработку проектно-технической документации и в 1968 г. начал серийный выпуск установки ИМАШ-10-68, созданной на базе аппаратуры ИМАШ-ЮМ и имеющей близкие к ней характеристики [49, с. 25—32]. Эта установка предназ1йачена для исследования микроструктуры образца с одновременной регистрацией изменения его электросопротивления в процессе испытания на усталость металлов и сплавов при знакопеременном изгибе в условиях нагрева.  [c.143]

Сопротивление некоторого конструкционного материала мно-гоцикловому усталостному разрушению оценивают по кривой усталости, которая строится в координатах Отах — N при данном коэффициенте асимметрии цикла R, иногда также в координатах Ста — N. Числа циклов N наносятся в логарифмическом, а напряжения — в логарифмическом или натуральном масштабе (рис. 1.12). Заштрихованы области 95 % доверительной вероятности для средних значений долговечности. Кривая для = 0,1 нанесена по расчету согласно (1.7а). Аппаратура, на которой проводятся многоцикловые испытания на усталость, а также методика их проведения описаны, например, в работах [103, 88). Эти испытания проводятся, как правило, в условиях мягкого нагружения  [c.19]

Увиверсальвый комплекс машин для программных испытаний на усталость. Одна из главных особенностей комплекса машин для программных испытаний на усталость образцов и натурных деталей состоит в его общей КОМПОЗИЮ1И, предусматривающей сборку на одной несущей плите с крепящими пазами испытательных машин нескольких типов из достаточно простых унифицированных механических уалов с независимым креплением и автономным управлением. Пусковая, программирующая и стабилизирующая аппаратура объединены в приборной стойке. Число вариантов машин не ограничено, поэтому кроме обьганых испытаний на изгиб, кручение, растяжение-сжатие (в условиях мягкого и жесткого нагружения) возможны и другие испытания, в том числе при комбинированном или двухчастотном нагружении.  [c.297]

Как правило, сопротивление зарождению трещины оценивается временным параметром (например, число циклов нагружения до появления трещины определенной глубины при испытании на усталость), энергетическим (например, работа, затраченная на возникновение трещины при однократном нагружении) Существенной проблемой для количественного определения сопротивления зарождению трещины является определение момента появления тpeщиньt. В зависимости от применяемого метода, чувствительности регистрирующей аппаратуры сопротивление зарождению трещины может получиться различным у разных исследователей.  [c.50]

Для измерения общего электродного потенциала в процессе циклического нагружения образцов нами [98] разработана установка (рис. 16), которая состоит из машины для испытания материалов на сопротивление усталости 5, электродвигателя 6, счетчика числа циклов 7 и нагружающего механизма 2. Испытываемый образец 4 с помощью фторопластовых втулок 8 помещают в термостатируемую камеру с коррозионной средой 3. Включение вращающегося образца в цепь измерения электродного потенциала осуществляется через контактное устройство 9 и электрод сравнения 10. Регистрация изменения электродных потенциалов осуществляется измерительной аппаратурой 1 с точностью 15 мВ. Для исключения влияния повыщающейся в процессе циклического деформирования образца температуры на изменение общего электродного потенциала установка оборудована термостатом, позволяющим поддерживать температуру коррозионной среды близкой к комнатной с точностью + 0,5°С. Для поляризации образцов в ванну введен платиновый электрод, подключенный к источнику поляризующего тока.  [c.41]


Описываемые ниже методика и аппаратура обеспечивают возможность регистрации диаграмм циклического деформирования с соответствующими измерениями деформаций, наблюдения за испытываемым объектом с целью анализа условий возникновения и развития трещин и за структурными изменениями материала, определяющими его сопротивление деформированию и разрушению. Для реализации методики к испытательной установке серии МИР [ 1 ] разработаны и изготовлены система двухчастотного силовозбужде-ния с низкочастотным нагружением в области малоцикловой усталости и регистрацией при этом диаграммы циклического деформирования и система нагрева образца для осуществления данных испытаний в области высоких температур. Внешний вид модернизированной установки с пультом управления ее системами представлен на рис. 1.  [c.15]

Таким образом, для точной оценки накопленного усталостного повреждения следует использовать параметры фактической кривой усталости, полученной с учетом температурных и временных особенностей (в частности, деформационного старения). Важен также правильный выбор значений располагаемой пластичности (деформационной способности) материала. Оптимальным является проведение экспериментов на материале одной плавки с сохранением основных методических подходов (типа испытания, типа образца, способа нагрева, методики измерения нагрузок и температур, точности аппаратуры). При этом для случаев де юрмационного старения точность вычисления повреждений существенно зависит от учета или неуче-та изменения во времени располагаемой пластичности конструкционного материала.  [c.104]


Смотреть страницы где упоминается термин Аппаратура для испытания на усталость : [c.85]    [c.112]    [c.38]    [c.131]   
Смотреть главы в:

Методы горячих механических испытаний металлов  -> Аппаратура для испытания на усталость



ПОИСК



Аппаратура для испытаний

Испытание усталость

Усталость

Усталость — Испытания усталости



© 2025 Mash-xxl.info Реклама на сайте