Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Осесимметричные компенсаторы

Решение осуществлялось для случая отсутствия внутреннего давления, так как испытание проводилось при уровне давления, не оказывающем существенного влияния на распределение деформаций компенсатора. Также предполагалось отсутствие температурных напряжений, обусловленных градиентами температуры по длине и толщине оболочки. Указанные ограничения не являются обязательными при использовании разработанной для ЭВМ программы и вытекают из характерных условий работы компенсатора. При этих условиях для определения осесимметричного напряженно-деформированного состояния оболочки переменной толщины в А -м полуцикле могут быть использованы следующие уравнения  [c.200]


Условия эксплуатации и конструктивные особенности. В машинах и конструкциях различного назначения широко применяют компенсирующие устройства, выполняемые часто в виде тонкостенных осесимметричных гофрированных оболочек вращения. Компенсаторы предназначены для уменьшения внутренних усилий в трубопроводах, обусловленных различными перемещениями (при сжатии-растяжении, изгибе, параллельном сдвиге торцов и др.), температурных напряжений и остаточных напряжений, возникающих при монтаже. Наиболее распространены компенсаторы с высокой компенсирующей способностью, выполненные с гибким металлическим элементом в виде силь-фона металлорукава и сильфонные компенсаторы.  [c.151]

Во многих отраслях промышленности широко применяют гибкие элементы, представляющие собой осесимметричные оболочки, как правило выполненные в виде сопряжений пластин или пологих конических оболочек и торообразных оболочек. К таким элементам относятся линзовые и сильфонные компенсаторы, торовые компенсаторы, гибкие металлорукава и трубопроводы.  [c.396]

Схема конструкции уплотняющего устройства крышки сосуда под давле-нием, работающего в условиях повышенной температуры приведена на рис. 14 [4]. Основную нагрузку от давления несет болтовое соединение, торовый элемент служит частично для уплотнения и для компенсации смещений, возникающих при нагреве и охлаждении крышки и корпуса сосуда. Для торового компенсатора такой конструкции, нагруженного внутренним давлением, характерны граничные условия, заданные в виде осесимметричных линейных и угловых смещений по краям оболочки. Как правило, температуру по толщине стенки и по меридиану оболочки можно считать постоянной. На рис. 15 приведена схема  [c.397]

Предложен достаточно простой и точный метод расчета сильфонных компенсаторов высокого давления в упругой области при осесимметричном нагружении, позволяющий исследовать широкий диапазон конструкций. Безразмерная форма решения дает  [c.155]

Для осесимметричных компенсаторов, формируюжцж волновые фронты враще-ния, соотношения (1.57)—(1.58) выглядят .aeд) юпJ lм образом  [c.33]

Осесимметричные компенсаторы, формжруюпще волновые фронты вращения, являются непосредственныьш аналогами компенсационных объективов и рассмотрены в 16, 18]. В данном разделе соответствующие формулы выводятся как частный случай изложенной выше общей теории. При этом для радиально-симметричных функций от г = и /и р = х jjp jji,,i0jjaTb те же симво-  [c.554]


Деформированное состояние оболочки компенсатора определялось на основе метода [140] решения задачи о длительном циклическом нагружении данной конструкции. Задача решалась в ква-зистациоиарной несвязанной постановке путем численного интегрирования на ЭВМ Минск-32 системы нелинейных дифференциальных уравнений, определяющих напряженно-деформированное состояние неупругих осесимметрично нагруженных оболочек вращения. Решение линейной краевой задачи производилось на основе метода ортогональной прогонки [52]. Рассматривалась только физическая нелинейность. Учет геометрической нелинейности при расчетах сильфонов, работающих как компенсаторы тепловых расширений в отличие от сильфонов измерительных приборов [193], обычно не производится [32, 150, 222], как не дающий существенного уточнения при умеренных перемещениях. Предполагалось, что все гофры сильфона деформируются одинаково. Поэтому расчет производился только для одного полугофра. Эквивалентный размах осевого перемещения полугофра, вызывающий те же деформации, что и полное смещение концов сильфона, определялся по формуле  [c.200]

В качестве примера рассмотрим влияние подкрепляющих колец на устойчивость серийного четырехволнового компенсатора Ду150 Rg = 0,106 м Ява = 0,0777 м Ri = Ri = = 0,0117 м h = 5. 1Q-" м, = 2 10 МПа, v = 0,3. Торцы компенсатора жестко защемлены. Исходное докритиче-ское осесимметричное НДС определяется в моментной и геометрически нелинейной постановке.  [c.98]

Постановка задачи. Рассматривается осесимметричное нагружение равномерным внутренним давлением и осевым усилием подкрепленной кольцами однослойной тонкостенной оболочки сильфонного компенсатора в упругой области ее работы. В недеформи-рованном положении оболочка состоит из тороидальных элементов положительной и отрицательной кривизны, сопряженных кольцевыми пластинками. Толщина оболочки принимается постоянной по высоте гофров. Подкрепляющие кольца считаются абсолютно жесткими. Профиль подкрепляющего кольца в общем случае образован участком конической поверхности Ь/ и сопряженными с ним yчa ткa п тороидальных поверхностей аЬ и fD (рис. 2).  [c.144]


Смотреть страницы где упоминается термин Осесимметричные компенсаторы : [c.554]    [c.152]    [c.221]    [c.297]    [c.215]    [c.122]   
Смотреть главы в:

Методы компьютерной оптики Изд2  -> Осесимметричные компенсаторы



ПОИСК



Компенсатор



© 2025 Mash-xxl.info Реклама на сайте