Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругое полупространство. Первая краевая задача

Упругое полупространство. Первая краевая задача  [c.212]

Рассмотрим упругое полупространство дгз О, на границе которого Хз = О заданы перемещения. Первая краевая задача заключается в решении в области > О системы уравнений в перемещениях  [c.212]

В случае одной сосредоточенной силы, нормальной к границе полупространства оно может быть получено наложением особых решений, соответствуюш.их, во-первых, действию сосредоточенной силы в неограниченной упругой среде, во-вторых, линии центров расширения (элементарное решение второго типа). Решение для одной сосредоточенной силы далее легко обобщается с помощью принципа наложения на случай произвольной, распределённой по границе нормальной к ней нагрузки. Второй путь решения заключается в сведении рассматриваемой задачи к некоторой краевой задаче теории потенциала — оказывается (это можно получить, исходя из общего решения в форме П. Ф. Папковича), что задача теории упругости о разыскании напряжённого состояния в полупространстве при заданном значении нормального напряжения на границе полупространства и при отсутствии на ней касательных напряжений и сводится к разысканию одной гармонической функции, обладающей всеми характеристическими свойствами потенциала простого слоя, распределённого по плоской области загружения с плотностью, пропорциональной интенсивности нагрузки.  [c.90]


Вопрос о действии штампа на упругое полупространство, таким образом, сведён к рассмотрению следующей задачи теории упругости со смешанными краевыми условиями во-первых, обращаются в нуль касательные напряжения и tyg по всей плоскости 2 = 0 во-вторых, вне области Q этой плоскости обращается в нуль нормальное напряжение 0 в-третьих, задаётся значение нормального перемещения w точек области Q. В этом задании величины 3 , 8 заранее неизвестны и для их определения должны быть использованы уравнения равновесия штампа (1.7).  [c.254]

В большинстве рассмотренных работ, связанных с контактными задачами, предполагалось, что трение между штампом и упругим телом отсутствует. Значительно большие математические трудности представляет другой предельный случай, когда штамп и основание находятся в условиях сцепления (такая задача есть частный случай основной смешанной задачи теории упругости). В отличие от более простых смешанных задач, в этом случае дело сводится к отысканию двух гармонических в полупространстве функций с неразделенными краевыми условиями первого и второго рода. Впервые такая задача для кругового штампа была решена В. И. Моссаковским (1954) путем сведения ее к плоской задаче линейного сопряжения двух аналитических функций. Впоследствии Я. С. Уфлянд (1954, 1967) дал непосредственное решение этой задачи с помощью тороидальных координат и интегрального преобразования Мелера — Фока. В статье Б. Л. Абрамяна, Н. X. Арутюняна и А. А. Баблояна (1966) осуществлен еще один подход к той же задаче, основанный на использовании парных интегральных уравнений. Контактным задачам при наличии сцепления посвящена также работа В. И. Моссаковского (1963). Решение основной смешанной задачи теории упругости для полупространства с прямолинейной границей раздела краевых условий дано Я. С. Уфляндом (1957) с помощью интегрального преобразования Конторовича — Лебедева.  [c.36]


Смотреть страницы где упоминается термин Упругое полупространство. Первая краевая задача : [c.182]    [c.59]   
Смотреть главы в:

Теория упругости  -> Упругое полупространство. Первая краевая задача



ПОИСК



I краевые

Задача краевая

Задача первая

Задача упругости

Краевая задача первая

Полупространство



© 2025 Mash-xxl.info Реклама на сайте