Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ядерная физика О ядерной материи

В основу книги положено второе издание учебника Введение в ядерную физику . Однако настоящее, третье издание существенно отличается от второго большим количеством дополнений и переработкой практически всего старого материала. Из дополнений можно упомянуть диаграммы Фейнмана, формфакторы нуклонов, вопрос об универсальном слабом взаимодействии, фазовый анализ нуклон-нуклонного рассеяния, вопрос о СЯ-инвариантности и ее нарушении в распаде нейтрального /С-мезона, (л—л)-рассеяние и др.  [c.6]


Углубление представлений о материи ввело новые методы математического анализа термодинамических свойств водяного пара. С развитием ядерной физики изменилось представление  [c.27]

Большие удельные потери тяжёлых ионов позволяют исследовать вещество в экстремальных состояниях, в условиях сверхвысоких темп-р и существенного изменения структуры материала. Эти уникальные свойства тяжёлых ионов дают возможность использования их для моделирования радиац. повреждений разл. материалов, подвергающихся воздействию больших нейтронных потоков в совр. ядерных реакторах, для глубокой послойной имплантации в разл. вещества, включая монокристаллы, при создании прецизионных трековых мембран, в биофизике, биомедицине и т. д. Т. о., исследования с помощью тяжёлых ионов проводятся во мн. областях, связанных как с фундам. проблемами совр. ядерной физики, так и с решением прикладных задач.  [c.196]

Основой Я. с. является сильное взаимодействие нуклонов. Сильное взаимодействие нуклонов в ядрах отличается от взаимодействия свободных нуклонов, однако последнее -является фундаментом, на к-ром строится вся ядерная физика и теория Я. с. Это взаимодействие обладает изотопической инвариантностью. Суть её в том, что взаимодействие между 2 нейтронами, 2 протонами или между протоном и нейтроном в одинаковых квантовых состояниях одинаково. Поэтому можно говорить о взаимодействии между нуклонами, не уточняя, о каких нуклонах идёт речь (см. также Изотопическая инвариантность ядерных сил). Я. с. являются короткодействующими (радиус их действия 10 см) и обладают свойством насыщения, к-рое заключается в том, что с увеличением числа нуклонов в ядре уд. энергия связи нуклонов остаётся примерно постоянной (рис. 1). Это приводит к возможности существования ядерной материи.  [c.670]

Настоящее учебное пособие написано на основе курсов лекций по ядерной физике которые читаются автором в соответствии с учебными программами, действующими в Московском университете. Материал излагается таким образом, чтобы можно было качественно понять современные экспериментальные результаты ядерной физики без знания квантовой механики, а минимально необходимые сведения о квантовомеханиче-ских представлениях даются в книге.  [c.2]

Изучение элементарных частиц непрерывно меняет и обогащает наши представления о свойствах материи. Все это определяет исключительно быстрое развитие ядерной физики.  [c.5]


Новые открытия ядерной физики, глубокое проникновение в мир элементарных частиц, непрекращающийся процесс обнаружения огромного числа новых явлений и закономерностей вновь доказывает справедливость утверждения В. И. Ленина о неисчерпаемости материи.  [c.292]

Первой большой работой, в которой был представлен достаточно полный и систематически изложенный материал о состоянии цифровой спектрометрии ядерной физики, явилась большая глава, написанная  [c.96]

Необходимо заметить, однако, что в вакууме нет обычного вещества, как оно понимается в химии, fio вакуум не есть пустота в буквальном смысле этого слова. Его заполняют физические поля (гравитационное, электромагнитное, ядерное и пр.). Они, наряду с обычным химическим веществом, являются различными формами материи. В вакууме могут происходить различные физические процессы. Примером может служить поляризация вакуума, т. е. рождение пар электрон — позитрон в сильных электрических полях. Можно было бы не возражать по существу против употребления термина эфир в смысле носителя Этих физических свойств пустого пространства. Возражение относится к представлению об эфире как о жидкой, твердой, упругой или какой-либо другой среде. Наделенной механическими свойствами. Однако в современной физике предпочитают не пользоваться термином эфир в указанном смысле, а употребляют термин вакуум .  [c.29]

В книге изложены осиоцы ядерной физики как одного из крупных разде лои современной физики, изучаюи его специфические формы материи и движения. В ней кратко рассматривается проблема ядерных сил и современные представления о структуре атомных ядер, освещаются экспериментальные методы ядерной физики и физики элементарных частиц.  [c.2]

Применение этого термина для характеристики полей нейтронного излучения впервые было рекомендовано в 1959 Международной комиссией по радиационным единицам и измерениям. Понятие Ф. используется в активационном анализе материалов. Наведённая активность к.-л. материала, при прочих равных условиях, пропорц. Ф. Зная Ф., вычисляют время облучения нейтронами, необходимое для получения заданной наведённой активности вещества. Т. о., Ф. не является однозначной характеристикой нейтронного поля. Значение Ф. в рассматриваемой точке поля зависит не только от плотности потока нейтронов в этой точке поля, но и от выбранного интервала времени облучения. Фактически Ф. представляет собой интеграл по времени от плотности потока нейтронов. В этом неудобство предложенной характеристики нейтронного поля—Ф. Поэтому, наряду с Ф применяют термин мощность флюекса нейтронов , к-рый совпадает с термином плотность потока частиц с размерностью частица м С Ь>, широко используемым в ядерной физике. Для характеристики нейтронных полей иногда употребляют термины флюенс потока энергии нейтронов и мощность флюен-са потока энергии нейтронов с размерностями соответственно Джм и Вт-м . М. Ф. Юдин.  [c.329]

Понятие о Ф. э. используется в физике твёрдого тела, в ядерной физике, в астрофизике и т. д. Величина Ф. э. существенно зависит от физ. свойств системы. В металлах обычно ёр1к 10 К, в полупроводниках 10 К, в Не ок. 1 К, а в звёздной материи может достигать миллионов К.  [c.805]

Статистическая физика—наука о самых общих свойствах макроскопических объектов, т.е. таких объектов, которые составлены из множества микроскопических частиц. Этими частицами могут быть, например, атомы или молекулы, и тогда мы имеем дело с неметаллически1Щ1 твердыми телами, жидкостями или газами. Ими могут быть электроны и ионы, составляющие плазму, или электроны и ионы, образующие металл. Свет, рассматриваемый как совокупность фотонов, или ядерная материя, рассматриваемая как совокупность нуклонов, тоже являются макроскопическими объектами и подлежат изучению методами статистической физики.  [c.9]

Этот красивый механизм У. ц. остаётся пока гипотезой. Аналитич. проверка Этой гипотезы (как и мн. других, см. обзоры [3, 4]) крайне затруднена, -т. к. сильная связь препятствует применению традиц. методов теоретич. физики. В теории сильных взаимодействий используются (с 1980) методы прямого численного моделирования теории поля, в частности для исследования проблемы У. ц. [4]. Разумеется, численный метод, учитывающий большое, но всё же конечное число степеней свободы, не может доказать рост кварк-антикваркового потенциала до асимптотически больших расстояний. Однако даже обнаруженный в компьютерных измерениях рост потенциала на промежуточных расстояниях (область проведённых измерений примерно до 1,5 Ф) факт нетривиальный. (На рост кварк-антикваркового потенциала на таких расстояниях указывает и анализ в рамках потенциальных моделей реально существующих в природе связанных состояний тяжёлых кварков.) Имеются также компьютерные свидетельства того, что при высокой темп-ре (ок 200 МэВ) в КХД происходит фазовый переход к деконфайнменту —состоянию вещества, в к-ром нет У. ц., а ядерная материя существует в форме кварк-глюонной плазмы. Так.ой фазовый переход может иметь важные последствия для космологии горячей стадии Вселенной. Однако физ. механизм этого фазового перехода остаётся неясным, если не считать нек-рых данных о причастности к нему конфигураций глюонного поля типа описанных выше цветных монополей.  [c.214]


Параллельно с организацией встречи с Бором, когда сотрудники Бюро-2 еще только проводили обработку указанных выше разведывательных материалов, содержавших наряду с информацией о работах в США по сверхбомбе, новую информацию по атомным бомбам, И.В. Курчатов, по-видимому, обратился к группе видных ученых-физиков СССР, среди которых были специалисты по теории детонации, И.И. Гуревичу, Я.Б. Зельдовичу, И.Я. Померанчуку и Ю.Б. Харитону, сообщив им постановку задачи и некоторые исходные данные, с предложением в остальном независимо рассмотреть вопрос о возможности осуществления с помощью взрыва атомной бомбы ядерной детонации в цилиндре из дейтерия (этому направлению создания сверхбомбы и был посвящен материал Фукса).  [c.88]

В XX в. наши представления о частицах и полях были объединены современной квантовой теорией поля. Согласно квантовой теории поля, все частицы представляют собой возбуждения квантовых полей. Мы знаем теперь, что электромагнитные поля связаны с частицами, которые назьтаются фотонами, хотя они и обладают волновой природой. Другие поля, например поля, связанные с ядерными силами, также имеют соответствующие частицы. Подобно тому, как фотоны испускаются или поглощаются молекулами, совершающими переход из одного состояния в другое (рис. 2.1) (согласно классическим представлениям такие процессы соответствуют испусканию или поглощению энергии), при взаимодействии частиц высокой энергии происходит спонтанное испускание или поглощение таких частиц, как электроны, мезоны и протоны. Одно из наиболее замечательных открытий современной физики заключается в том, что для каждой частицы есть античастица. При столкновении частицы со своей античастицей обе частицы аннигилируют, и их энергия превращается в другие формы, например в фотоны. Все это расширило наше знание о возможных состояниях вещества. При тех температурах, которым соответствует наш повседневный опыт, столкновения молекул сопровождаются испусканием фотонов, но не других частиц. При достаточно высоких температурах (больше 10 ° К) в результате столкновений могут появиться не только фотоны, но и другие частицы. Рождение частиц часто происходит парами частица—античастица (рис. 2.2). Таким образом, существуют состояния вещества, в которых происходит непрестанное рождение пар частица — античастица. В этом состоянии материя (вещество) есть не что иное, как сильно возбужденное состояние поля. Понятия термодинамического равновесия и термодинамической температуры применимы и к такому состоянию.  [c.47]


Смотреть страницы где упоминается термин Ядерная физика О ядерной материи : [c.536]   
Смотреть главы в:

Труды по теоретической физике и воспоминания Том1  -> Ядерная физика О ядерной материи



ПОИСК



Материалы ядерные

Ядерная материя

Ядерная физика



© 2025 Mash-xxl.info Реклама на сайте