Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плоские задачи движения однородной жидкости

Плоские задачи движения однородной жидкости  [c.54]

Тестовые задачи. На Всесоюзных семинарах по численным методам механики вязкой жидкости в качестве тестовых рекомендованы две известные задачи ЕК- Первая — о стационарном плоском конвективном движении вязкой жидкости в квадратной области при однородном подогреве сбоку. Она исследовалась численно в [21, 28, 54, 55] и экспериментально в [56]. Объектом  [c.117]


В линейной постановке в приближении Буссинеска решена плоская задача о движениях трехслойной жидкости, вызванных вибрациями кругового цилиндра. Цилиндр полностью помещен в среднем линейно стратифицированном слое, верхний и нижний слои являются однородными и ограничены жесткими горизонтальными стенками. Жидкость предполагается идеальной и несжимаемой. Выполнены расчеты коэффициентов присоединенных масс и демпфирования в зависимости от частоты колебания цилиндра и толщин слоев.  [c.155]

Задачи вязкого течения жидкостей и газов в пограничном слое при внешнем обтекании тел. Этот класс объединяет все задачи ламинарного и турбулентного, стационарного и нестационарного режимов течения однородных и миогокомионентных газов и жидкостей при свободном и вынужденном обтекании плоских и пространственных тел с произвольным распределением скоростей в потенциальном или завихренном потоке при произвольных условиях на границах и на поверхностях разрывов, Задачи данного класса описываются системой дифференциальных уравнений параболического типа, содержащей по крайней мере одну одностороннюю пространственную или временную координату, вдоль которой протекающий процесс зависит только от условий на одной из границ рассматриваемой области. Например, для задач теплообмена при неустановившемся ламинарном или турбулентном двумерном движении однородного газа система, состоящая из уравнений неразрывности движения и энергии, имеет вид  [c.184]

Данная книга ставит своей задачей главным образом изучение устойчивости движения однородной вязкой жидкости по отношению к бесконечно малым возмуш,ениям, т. е. по отношению к естественным формам малых колебаний такой механической системы. Она не содержит, следовательно, многих других интересных проблем, таких, например, как устойчивость границы, разделяющей две различные жидкости. Даже в случае однородной вязкой жидкости не дало бы большой пользы только составление перечня всех изученных случаев. К счастью,.два различных прототипа неустойчивости представлены двумя, простейшими -типами течения, а именно течением Куэтта и плоским течением Пуазейля первое из них впервые успешно исследовал Дж. И. Тэйлор, а второе — В. Гейзенберг. С тех пор оба случая рассматривались рядом других авторов. Исследование этих двух случаев, подробное настолько, насколько это нужно, составляет поэтому центральную часть теоретического анализа, содержащегося в этой книге. При этом будет наглядно показано, что многие другие случаи схожи с двумя указанными. Случаю пограничного слоя также будет уделено много места вследствие замечательного успеха экспериментов Шубауэра и Скрэм-стеда и других недавних открытий, а также благодаря важности этого случая в приложениях к технике.  [c.5]


Задачи генерации движений периодически колеблющимся телом в однородной и стратифицированной жидкости интенсивно изучаются уже в течение длительного времени. Достаточно полно рассмотрен случай однородной жидкости со свободной поверхностью. Методы рещения этих задач в значительной степени используют потенциальный характер движения жидкости и могут быть распространены на случай стратифицированной жидкости лишь при наличии слоя постоянной плотности и погружения тела полностью в этом слое. Так, например, решение плоской задачи о колебаниях кругового цилиндра, расположенного под пикноклином, дано в [1]. При этом резкий пикноклин моделируется двухслойной жидкостью, а плавный - трехслойной жидкостью с линейно стратифицированным слоем и однородными верхним и нижним слоями.  [c.155]

Укажем еще некоторые из многочисленных отдельных журнальных статей Г. В. Гродзовский, Решение осесимметричных задач свободной турбулентности по теории турбулентной диффузии, Прикл. матем. и мех., т. XIV, в. 4, 1950 О. Н. Б у ш-марин. Турбулентная осесимметричная струя несжимаемой жидкости, вытекающая в спутный однородный поток той же жидкости, Труды ЛПИ, Энергомашиностроение, Техническая гидромеханика, № 5, 1953, 15—23 и того же автора Закрученная струя в спутном потоке жидкости той же плотности в Трудах ЛПИ, Я 176, 1955 Л. Г. Лойцянский, К теории плоских ламинарных и турбулентных струй. Труды ЛПИ, № 176, 1955 А. С. Гиневский, Турбулентный след и струя в спутном потоке при наличии продольного градиента давления, Изв. АН СССР, Механика, Машиностроение , № 2, 1959 а также Приближенные уравнения движения в задачах теории турбулентных струй , там же, № 5, 1963 и большое число работ Л. А. В у л и с а и его сотрудников как в только что указанной монографии, так и в сб. Исследование физически.х основ рабочего процесса топок и печей , Алма-Ата, 1956.  [c.718]


Смотреть страницы где упоминается термин Плоские задачи движения однородной жидкости : [c.420]   
Смотреть главы в:

Качественные методы в механике сплошных сред  -> Плоские задачи движения однородной жидкости



ПОИСК



Движение жидкости плоское

Движение плоское

Жидкость однородная

Задача жидкости

Однородность тел

Плоская задача

Плоское движение (плоская задача)



© 2025 Mash-xxl.info Реклама на сайте