Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кремний - титан

Сталь, в свою очередь, подразделяется на четыре группы обыкновенную, качественную, инструментальную и легированную, в последнюю входит ряд компонентов, которым в обозначении марки стали соответствуют следующие литеры В — вольфрам Г — марганец Д — медь М — молибден Н — никель Р — бор С — кремний Т — титан Ф — ванадий X — хром Ю — алюминий.  [c.286]

Буквенные обозначения легирующих элементов Р — бор, Ю — алюминий, С — кремний, Т — титан, Ф— ванадий, X — хром, Г — марта нец, Н — никель, М — молибден,  [c.68]


В качестве раскислителей берут активные элементы марганец, кремний, алюминий, титан, редкоземельные металлы (РЗМ), у которых большое сродство к кислороду, зависящее от температуры и концентрации.  [c.326]

Рис. 9.16. Изотермы раскисления железа марганцем (а), кремнием (б), титаном (а) и алюминием (г) Рис. 9.16. Изотермы раскисления железа марганцем (а), кремнием (б), титаном (а) и алюминием (г)
Обозначения марок стали по указанному ГОСТу построены следующим образом. Первые две цифры указывают содержание углерода в сотых долях процента. Легирующие элементы обозначены прописными русскими буквами Р — бор, Ю— алюминий, С — кремний, Т — титан, Ф — ванадий, X — хром, Г — марганец, Н — никель, М — молибден, В — вольфрам. Цифры после букв указывают процентное содержание легирующего элемента в целых единицах. Отсутствие цифр означает, что сталь содержит до 1,5% этого элемента. Буква А в конце марки обозначает высококачественную сталь . Особо высококачественная сталь обозначается буквой Ш, которая ставится через тире в конце марки.  [c.329]

Согласно ГОСТ 4543—71 в обозначении марок конструкционной легированной стали первые две цифры указывают среднее содержание углерода в сотых долях процента, буквы за цифрами означают Р — бор, Ю — алюминий, С — кремний, Т — титан, Ф — ванадий, X — хром, Г — марганец, Н — никель, М — молибден, В — вольфрам. Цифры после буквы указывают примерное процентное содержание легирующего элемента в целых единицах отсутствие цифр означает, что в стали содержится до  [c.49]

Основными легирующими компонентами в этих сплавах являются кобальт, кремний и титан. В последнее время появились никелевые сплавы, легированные вольфрамом.  [c.266]

Силицирование титана из паровой фазы можно осуществить за счет значительного увеличения температуры кремния по сравнению с температурой силицированного титана. Величина температурного перепада между кремнием и титаном должна быть таковой, чтобы равновесное давление кремния было больше давления диссоциации силицидов титана. Силицирование титана из паровой фазы можно осуществить также, если предварительно на поверхность титана нанести тонкую (10—20 мкм) пленку молибдена, вольфрама или другого тугоплавкого металла.  [c.40]

B. Кинетика реакции карбида кремния с титаном......117  [c.77]


В. Кинетика реакции карбида кремния с титаном  [c.117]

К третьему классу относятся системы, в которых реакция начинается сразу же при контакте волокна и матрицы, а реакционная зона (первоначально постоянной толщины) начинает расти за счет процессов, контролируемых диффузией. Примерами являются системы титан —бор, титан — карбид кремния и титан — окись алюминия.  [c.145]

Примеси замещения, введенные в металлы и сплавы Fe— Сг — Ni в количестве до 5 ат. %, также могут оказать значительное влияние на сопротивляемость сплава радиационному распуханию. В работах Джонстона и др. [187, 203] приведены результаты исследования радиационного распухания сплава Fe — 15 Сг — 20 Ni, легированного молибденом, алюминием, титаном, цирконием, кремнием, после облучения ионами Ni" с энергией 5 МэВ и в реакторе. Некоторые из них графически представлены на рис. 104. Видно, что введение титана, ниобия, кремния и циркония приводит к уменьшению распухания, причем цирконий подавляет распухание наиболее эффективно. Данные о влиянии молибдена неоднозначны легирование сплава молибденом приводит к увеличению распухания в условиях ионного облучения и к уменьшению при облучении в реакторе. Совместное легирование сплава кремнием и титаном подавляет распухание более эффективно, чем легирование каждым элементом в отдельности.  [c.176]

Спектральный анализ дает возможность определить все основные элементы легированной стали хром, молибден, вольфрам, марганец, кремний, ванадий, титан, ниобий, никель. Углерод, серу и фосфор методом спектрального анализа определить не удается. Точность анализа достаточна для определения марки стали.  [c.65]

Некоторые стали, содержащие кремний и титан в количестве соответственно до 2,6 и 1%, заметно меняют механические свойства после пребывания в среде натрия при температуре около 700 С. Их прочность возрастает, а пластические свойства ухудшаются вследствие образования вторичных карбидов.  [c.290]

Для повышения механических свойств и коррозионной устойчивости в листовую сталь вводят легирующие элементы хром, никель, марганец, кремний, ванадий, титан и др.  [c.107]

В обозначении марки стали две первые цифры определяют среднее содержание С в сотых долях процента буквы обозначают В — вольфрам Г — марганец М — молибден Н — никель X — хром Ю — алюминий Р — бор С — кремний Т — титан Ф — ванадий К — кобальт Б — ниобий А — азот (когда буква А находится не в середине обозначения марки).  [c.58]

Когда нет необходимого оборудования или когда процесс вакуумного раскисления не подходит по каким-либо причинам, добавляют элементы, которые сами реагируют с кислородом, такие, как кремний, алюминий, титан, ниобий, ванадий или цирконий (марганец также действует как раскислитель). Эти металлы, особенно когда они присутствуют в избытке, оказывают значительное влияние на окончательные свойства стали. Наиболее часто используется в качестве раскислителя кремний, который присутствует в виде твердого раствора в феррите и оказывает заметное влияние на ударную вязкость при низкой температуре. Алюминий влияет на свойства стали по-разному. Он очищает зерна стали от кислорода и реагирует с азотом, увеличивая тем самым ударную вязкость углеродистых сталей, но, будучи добавлен в заметном количестве, способствует графитизации и ослаблению границ зерен, действуя тем самым на прочность и свариваемость. Окись алюминия, которая является продуктом реакции с кислородом, может оставаться в стали во, взвешенном состоянии, образуя неметаллические включения. Другими возможными раскислителями могут быть титан, цирконий, ниобий и ванадий, которые в одних случаях могут оказаться полезными, а в других— вредными, поэтому использование этих элементов ограничивается созданием определенных сортов сталей, где их влияние проявляется с положительной стороны.  [c.51]

На рис. 4 приведена принципиальная схема изготовления конструк ционных деталей из порошков железа или материалов на его основе. Марки порошковых сталей обозначают сочетанием букв и цифр. Первые две буквы СП указывают, что сталь получена методом порошковой металлургии. Число после буквы П показывает среднее содержание общего углерода в сотых долях процента (содержание свободного углерода при этом не превышает 0,2 %). Следующие за этим числом буквы обозначают легирующие элементы А - азот, Б - ниобий, В-вольфрам, Г - марганец, Д - медь, К - кобальт, М - молибден, Н -никель, П - фосфор, С - кремний, Т - титан,Ф - ванадий, X - хром, Ц-  [c.14]


Как известно, кремний, алюминий, титан, цирконий и бор образуют химические соединения с железом. Это приводит к отрицательному отклонению от закона Рауля.  [c.78]

Обозначения легирующих элементов В — вольфрам, Г — марганец, М — молибден, Н — никель, Р — бор, С — кремний, Т — титан, Ф — ванадий, Ю — алюминий.  [c.12]

Химические элементы в марках стали обозначены следующими буквами А - азот, Б -ниобий, В - вольфрам, Г - марганец, Д - медь, Е - селен, М - молибден, Н - никель, Р - бор, С - кремний, Т - титан, Ф - ванадий, Ю -алюминий, К - кобальт, X - хром, Ц - цирконий.  [c.120]

В обозначении марок стали первые цифры указывают среднюю или максимальную (при отсутствии нижнего предела) массовую долю углерода в сотых долях процента буквы за цифрами означают А - азот, Б - ниобий, В - вольфрам, Г - марганец, Д - медь, М - молибден, Н - никель, Р - бор, С - кремний, Т - титан, Ф - ванадий, X - хром, Ю - алюминий, Л - литейная. Цифры, стоящие после букв, указывают примерную массовую долю легирующего элемента в процентах.  [c.166]

Принцип обозначения химического состава наплавленного металла прежний — углерод дан в сотых долях процента, среднее содержашю основных химических элементов указано с точностью до 1% после следующих буквенных символов А — азот, Б - ниобий, В — вольфрам, Г — марганец, К — кобальт, М — молибден, II --- иике.ль, Р — бор, С —- кремний, Т — титан, Ф — ванадий, X — хром. Показатели твердости наплавленного металла в зависимости от типа электрода даны либо в исходном поело наплавки состоянии, либо после те])мообработки.  [c.113]

В обозначении марки стали первые две цифры указывают среднее содержание углерода в сотых долях процента, а буквы — основную легирующую присадку. Если эта присадка превышает 1,5%, то после буквы ставят цифру, указывающую примерное содержание этого элемента в це.,1ых единицах, например Сталь 12ХН2 — хромоникелевая сталь, содержащая углерода — около 0,12%, хрома — около 1% и никеля—около 2%. Буквы за цифрами означают В — вольфрам Г — марганец М — молибден Н — никель Р — бор С — кремний Т — титан Ф — ванадий X — хром Ю — алюминий и т. д.  [c.268]

Раскисление. Удаление из расплава растворенного кислорода называется раскислением. В качестве раскислителей в электропечи применяют углерод, карбид кальция, кремний, карбид кремния, марганец, титан (или их сплавы) и алюминий, а также комплексные раскислнтели - силикокальций, силико-марганец, алюмобарийкальций, силикоалюмомарганец и др.  [c.274]

Для улучшения свойств (механических, коррозионных, тепловых и др.) сталей применяют легирующие присадки (в скобках указаны буквенные обозначения присадок в марке стали) вольфрам (В), марганец (Г), медь (Д), молибден (М), никель (Н), бор (Р), кремний (С), титан (Т), хром (X), ванадий (Ф), алюминий (Ю). Процентное содержание в стали легирующих присадок указывают цифрами после буквы (например, сталь 12Х2Н4А содержит в среднем 0,12 % углерода, 2 % хрома и 4 % никеля). По способу производства углеродистые стали подразделяют на стали обыкновенного качества и стали качественные конструкционные, а легированные стали — на качественные, высококачественные (в конце обозначения марки стали содержится буква А, например, ЗОХГСА) и особо высококачественные.  [c.272]

Возможность регулирования газовой или паровой фазы очень важна для воспроизведения условий, существующих при изготовлении и эксплуатации композита. В гл. 10 Бонфилд описывает заметное влияние состава газовой атмосферы на смачиваемость нитрида кремния алюминием, что может служить основой для выбора оптимальной атмосферы изготовления композитов. С другой стороны, Баше [5] приводит результаты исследований совместимости борного волокна, покрытого карбидом кремния, с титаном (волокна нагревали в контакте с порошком титана). Как компонент композита титановая матрица поддерживает крайне низкое давление диссоциации кислорода и азота у поверхностей волокон. Низкая скорость реакции волокон с порошком титана, по-видимому, определяется наличием газа около волокон.  [c.39]

Изучая реакцию между никелем и окисью алюминия, Меган и Харрис [23] отжигали образцы на воздухе. При этом кислород поступал в систему и растворялся в никеле до насыщения. Насколько важно условие насыщения матрицы для выполнения параболического закона роста, показано в работе [35], которая уже обсуждалась в разд. В в связи с реакцией между карбидом кремния и титаном. Толщина реакционного слоя измерялась металлографически по косым сечениям. Ранее было установлено [26], что продуктом этой реакции является шпинель NIAI2O4, и обсуждались условия образования этого соединения. В частности, необходимым условием протекания реакции является присутствие достаточного количества кислорода. Давление кислорода над на-  [c.125]

Аустенитные стали имеют, как правило, однофазную микроструктуру. Основными исключениями являются присутствие б-феррита (при наличии в достаточном количестве стабилизирующих его элементов, таких как хром, кремний или титан) и образование (в некоторых сталях) индуцированного деформацией мартенсита. Мартенсит может быть представлен или о, ц. к. а -фазой, или г. п. у. 8-фазой, или обеими фазами вместе в зависимости от стали. Согласно некоторым данным присутствие б-фазы повышает стойкость против КР [66, 91, 96], хотя этот вывод мог быть более однозначным, если бы одновременно были исследованы и стали без феррита [66, 91]. При испытаниях в водороде, где основным эффектом является уменьшение параметра относительного сужения, наличие 6-феррита влияет на морфологию разрушения растрескивание происходит по границам аустенита и б-фазы [97]. В сталях 304А и 3095 такое изменение морфологии разрушения не сопровождалось дополнительным уменьшением относительного сужения по сравнению со сплавом без феррита [72, 97, 98], Можно предположить, что б-феррит способен оказывать влияние на распространение трещины либо как менее растрескивающаяся фаза, либо как фаза, в которой затруднен процесс электрохимического заострения вершины трещины (этот процесс будет более подробно рассмотрен в дальнейшем) [60, 64]. Поскольку при испытаниях в водороде этот процесс не происходит, в этих условиях (потери вязкости) роль б-феррита должна быть другой.  [c.75]


Примечания ]. В обозначениях марок сплавов буквы означают Б — ниобий, Д — медь, К — кобальт, Н — никель, С — кремний, Т — титан, Ю — алюминий, А — столбчатую кристаллическую структуру, АА монокристалли-ческую структуру. Цифры означают процентное содержание элемента.  [c.27]

Хром, молибден, кремний и титан, а также вольфрам, цирконий, ванадий и другие элементы, выклинивающие у-область в двойной системе, выклинивают у-область и в тройной  [c.337]

Кроме указанных способов связывания атмосферного азота, следует упомянуть нитридный метод. Он основан на свойстве азота непосредственно соединяться со многими химическими элементами — литием, кальцием, магнием, алюминием, кремнием, бором, титаном и др. Получающиеся при этом нитриды разлагаются водой с выделением аммиака. В технике рассматриваемого периода применяли нитрид алюминия (A1N). Его изготовляли не из чистого алюминия, стоимость которого в конце XIX — начале XX в. была высокой, а из алюминиевой руды — боксита. Для этого смесь алюминиевой руды с углем нагревали до 1600—1800° С при одновременном пропускании азота (способ Серпека) [40, с. 26—27].  [c.164]

Условные обозначения марок проволоки состоят из индекса Св (сварочная) и следующих за ним цифр и букв. Цифры, следующие за индексом Св, указывают среднее содержание углерода в сотых долях процента. Химические элементы, содержащиеся в металле проволок, обозначены следующими буквами А — азот (только в высоколегированных проволоках) Б — ниобий В — вольфрам Г — марганец Д — медь М — молибден Н — никель С — кремний Т — титан Ф — ванадий X — хром Ц — цирконий Ю — алюминий. Цифры, следующие за буквенными обозначениями химических элементов, указывают среднее содержание элемента в процентах. После буквенного обозначения элементов, содержащихся в небольших количествах, цифры не проставляют. Буква А на конце условных обозначений марок низкоуглеродистой и легированной проволоки указывает на повышенную частоту металла по содержанию серы и фосфора. В проволоке марки Св-08АА сдвоенная буква А указывает на более низкое содержание серы и фосфора по сравнению с их содержанием в проволоке марки Св-08А.  [c.325]

Маркировка легированных конструкционных сталей. Легированные конструкционные стали маркируют цифра.ми и буквами. Двухзначные цифры,. приводимые в начале марки, указывают среднее содержание углерода в сотых долях процента, буквы справа от цифры обозначают легирующий элемент А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь, Е — селен, К — кобальт, Н — никель, М — молибден, П — фосфор, Р — бор, С — кремний, Т — титан, Ф — ванадий, X — хром, Ц — цирконий, Ч — редкозел1вльный, Ю — алюминий.  [c.261]

Применению ннобня как основы или легирующего элемента в сплавах цветных металлов уделялось и продолжает уделяться большое внимание. Изучение ряда двойных и тройных сплавов на основе ниобия с добавкой практически всех элементов периодической таблицы направлено на улучшение стойкости ниобия против окисления. Например, в работе [13.3] как компоненты двойных сплавов с ниобием исследовались следующие элементы бериллий, бор, хром, кобальт, железо, молибден, никель, кремний, тантал, титан, вольфрам, ванадий и цирконий. Наилучшая устойчивость против окисления при 1000° была получена для сплавов, содержащих около 9 вес. % хрома, 5 вес. % молибдена, 15,5 вес. % титана и 5,7 вес. % ванадия. Кинетика окисления изучалась для сплавов с хромом, молибденом, титаном, вольфрамом, ванадием и цирконием [80].  [c.463]

Двойные, тройные и четверные сплавы на основе ннобия, содержащие алюминий, хром, кобальт, железо, молибден, никель, кремний, тантал, титан, вольфрам, ванадий и цирконий, являются предметом широких исследований [100]. Наиболее устойчивый к появлению окалины сплав содержит 20 вес. % хрома, 12 вес.% кобальта и 68 вес.% ниобия.  [c.463]

Молибдек Натрий. Никель. Свинец. Рубидий Сера. . Селен. . Кремний Олово. Титан. Ванадий Цинк. . Водород Кислород Азот. .  [c.189]


Смотреть страницы где упоминается термин Кремний - титан : [c.141]    [c.256]    [c.28]    [c.50]    [c.160]    [c.226]    [c.183]    [c.332]    [c.177]    [c.58]    [c.835]    [c.168]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Кремний - титан



ПОИСК



Двуокись кремния титана

Диаграмма состояний железо—титан кремний—бор

Диаграмма состояний железо—титан кремний—углерод

Кинетика реакции титан — карбид кремния

Композиционные материалы титан — карбид кремния

Кремний

Кремний четыреххлористый титан четыреххл.ористый

Титан

Титан карбид кремния

Титан четыреххлорнстый кремний четыреххлористый

Титан — бериллий покрытый карбидом кремния

Титанит

Титания



© 2025 Mash-xxl.info Реклама на сайте