Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность при переменных изгибающих нагрузках

Прочность при переменных изгибающих нагрузках  [c.236]

Поверхностная закалка, т. е. быстрый нагрев поверхностного слоя стального колеса и последующее быстрое охлаждение, применяется для получения высокой твердости и прочности поверхностного слоя, высокой износостойкости и повышения усталостной прочности (при повторно-переменных изгибающих нагрузках статического и ударного характера). Поверхностная закалка, в частности, может быть осуществлена токами высокой частоты (т. в. ч.).  [c.278]


Обрыв бандажа может произойти и в случае недостаточной прочности шипа. В сечении шипа действует не только стационарная нагрузка, вызванная в основном центробежными силами бандажа, но и переменный изгибающий момент. В этих условиях исключительное значение приобретают радиус галтели у торцевой поверхности бандажа, выполнение фаски, исключающей подрезку шипа при клепке на участке бандажа, примыкающего к галтели, наличие остаточных напряжений после расклепки шипа.  [c.473]

Испытания на усталость позволяют определить предел выносливости, т. е. наибольшее повторно-переменное напряжение, которое материал выдерживает без разрушения в течение заданного числа циклов (база испытаний). Этот вид испытаний может производиться при изгибе, растяжении-сжатии, кручении, нормальных, повышенных и пониженных температурах, а также в агрессивных средах. Наиболее распространены испытания при изгибающей нагрузке. Соотношение между пределом выносливости при симметричном цикле и пределом прочности для углеродистой стали имеет вид  [c.79]

Рассмотрим симметричный цикл, когда напряжение меняется от +а до —а. Дадим понятие о пределе прочности при длительном действии такой симметричной переменной нагрузки. Случай симметричного цикла можно осуществить при вращении вала. Пусть вал несет тяжелый маховик, изгибающий вал тогда при вращении вала растянутые волокна его через пол-оборота оказываются сжатыми, затем снова растянутыми и т. д. Таким образом, крайние волокна находятся в условиях попеременного действия напряжений а и возможно при определенном значении о усталостное разрушение от изгиба (рис. 177). Число перемен напряжений Ы, которое следует дать для того, чтобы вызвать усталостное разрушение, зависит от величины наибольшего переменного напряжения о и от алгебраической разности между крайними значениями переменных напряжений (в данном случае последняя равна 2о).  [c.265]

Вал изгибается моментом, меняющимся от — до + = 60 кем, и скручивается моментом, меняющимся от нуля до 180 кгл при этом наибольших и наименьших своих значений изгибающий и крутящий моменты достигают одновременно. Коэффициент динамичности нагрузки для переменной составляющей цикла нормальных и касательных напряжений равен 2 коэффициент запаса прочности 1,8.  [c.325]

Усталостная прочность соединений с гарантированным натягом в 1,5—3 раза ниже, чем прочность гладких образцов (стандартных). Это объясняется высокой гчцентрацией напряжений и контактной коррозией, вызываемой местным проскаль-з шанием деталей при переменных внешних нагрузках (особенно изгибающих),  [c.104]


Более высокая прочность достигнута при испытании на усталость конструктивных элементов на переменные изгибающие нагрузки [39]. Так, например, предел выносливости клееных двутавровых балочек оказался равным 5 кГ/мм , конструктивно однотипных сваренных точечной сваркой 9 кГ/мм и клее-сварных 11 кГ1мм . Сравнительно невысокая прочность склеенных эле.ментов объясняется, очевидно, сильным влиянием неравномерного отрыва в зоне максимального прогиба.  [c.149]

Элементы конструкций и машин часто работают при периодически меняющихся (по величине и даже по знаку) напряжениях. В подобных условиях находятся, например, оси вагонов, рельсы, рессоры, поршневые штоки, валы и многие другие детали машин. При переменных напряжениях, как показывают практика и специальные исследования, прочность конструкций ниже, чем при статических напряжениях. Следует отметить, что переменные напряжения могут возникать от постоянных нагр гзок при вращательном движении элементов машин. Так, постоянные изгибающие нагрузки, действующие на валы и оси, вызывают периодически меняющиеся напряжения в точках сечений в связи с их регулярными перемещениями из растянутой зоны в сжатую, и наоборот.  [c.124]

Каждое из указанных испытаний не определяет всех механических свойств металла и не отражает полностью его поведения в готовых деталях различного назначения, а лишь обнаруживает те его свойства, которые характерны для данного напряженного состояния (для данного вида иснытания). Различие в прочности, пластичности и других механических свойствах образцов и готовых деталей или конструкций объясняется следующим 1) напряженное состояние, создаваемое при каком-либо механическом испытании, не воспроизводит того сложного напряженного состояния, которое в действительности возникает в условиях эксплуатации. Готовая деталь (или конструкция) часто подвергается совместному воздействию различных по характеру нагрузок. Так, например, коленчатый вал двигателя воспринимает не только изгибающие нагрузки, но работает в условиях кручения и повторно-переменных статических и динамических нагрузок 2) надрезы, например в виде галтелей, шпоночных канавок и т. д., имеющиеся в готовых деталях, изменяют распределение напряжений по сечению и объему и создают концентрацию напряжений. Поэтому многие механические свойства, особенно вязкость и пластичность, в готовой детали сложной формы с резкими переходами по сечению могут быть по величине существенно отличными и ниже значений этих же свойств, определенных при испытании гладкого образца (если даже условия нагружения детали и образца одинаковы) 3) в деталях, имеющих большие размеры, чем испытуемый образец, встречается относительно больше пороков металла (ликвация, поры, микротрещины), понижающих механические свойства.  [c.116]

Метод Варлоу-Девиса заключается в испытании в две стадии. Сначала образец подвергался фреттингу при помощи зажима, который подвергался вибрации за счет соединения к эксцентрику, вращающемуся от электрического мотора максимальная длина скольжения была 1,37 х10 дюйма между испытуемым образцом и истирающей поверхностью затем образец подвергался обычной изгибающей нагрузке переменного знака в ротационной машине для испытания на усталость, и результаты испытания этих образцов сравнивались с испытаниями аналогичных образцов, которые не подверглись предварительному фреттингу. Получены результаты, указывающие на то, что срок жизни образцов уменьшался за счет фреттинга заметно, но не очень значительно. Так, например, один миллион циклов в стадии фреттинга снижает усталостную прочность на 13%, —уменьшение, сходное с тем, которое получалось за два дня при погружении в обычную воду в испытаниях на усталость, проведенных Мак Адамом и Клайном (стр. 652).  [c.683]

Нагрузки лопастей, втулки и проводки управления, создаваемые аэродинамическими и инерционными силами несущего винта, необходимо знать для проектирования элементов конструкции в соответствии с существующими нормами статической и усталостной прочности. Для проектирования лопасти требуется знание напряжений в элементах ее конструкции, а теория упругой балки оперирует только с изгибающими и крутящими моментами в сечении лопасти. Для шарнирной лопасти критическим обычно является изгибающий момент в плоскости взмаха в сечении, находящемся вблизи середины лопасти. Для бесшарнирного винта критический изгибающий момент имеет место в комлевом сечении. Суммарные реакции в комлевом сечении определяют нагрз зки на втулку. Установочные моменты лопастей обусловливают нагрузки в проводке управления, которые часто являются фактором, ограничивающим предельные. режимы полета вертолета. Конструктора обычно интересуют периодические или близкие к ним нагрузки на установившихся режимах полета и при маневрах. Ввиду того что периодические изменения аэродинамических параметров вызывают большие периодические нагрузки на лопастях, втулке и проводке управления, анализ усталостной прочности является важнейшим элементом проектирования несущего винта. Усталостная прочность конструкции сильно зависит от локальных факторов распределения напряжений, поэтому она обычно должна подтверждаться натурными испытаниями. Это относится в первую очередь к несущим винтам вертолетов, многие элементы конструкции которых имеют ограниченный ресурс ввиду высокого уровня переменных нагрузок.  [c.640]


Примечания 1. В—отверстия, сверленые илн предварительно продавленнье и затем рассверленные в сборе С—продавленные и нерассверленные отверстия. 2. При учете основных и дополнительных нагрузок допускаемые напряжения при расчете на статическую прочность могут йыть повышены на 10%. 3. При / > 4 допускаемые напр жеипя могут быть увеличены, но не более чем яа 25%. 4. Для швов грузоподъемных конструкций допускаемые напряжения снижаются умножением на 0,88. 5. При работе соединения под действием переменной и знакопеременной нагрузок допускаемые напряжения снижаются умножением на коэффициент у. вычисляемый по формулам, приведенным в таблице, в которых Nи наименьшее и наибольшее по абсолютной величине значения нагрузки (усилие на заклепку, изгибающий момент, напряжения и т. д.). взятые го своим .наком. Значения V принимаются не более 1.  [c.248]

Основной расчетпрочности производят для переменной нагрузки на волне, при нормальной осадке корабля. Обозначим общий изгибающий момент всего корабля в поверяемом сечении на вершине волны через (см. Военные суда, расчет прочности) и момент сопротивления эквивалентного бруса через —тогда напряжение в К. от продольного изгиба корпуса судна  [c.79]

Двухлонжеронные крылья до последнего времени рассчитывались конструкторами приближенно, что вело или к перетяжелениям или к недостаточной прочности. Изложенные здесь методы расчета двух-лонжеронных крыльев с учетом работы обшивки позволят конструкторам путем уточнения расчета обеспечить достаточную прочность без перетяжелений. К сожалению, объем книги не позволил поместить графики распределения нагрузки по размаху для закрученных и незакру-ченных трапецевидных крыльев, и автору пришлось отослать читателя к первоисточнику (Справочник авиаконструктора, том I), книге достаточно дорогой и уже редкой. Но мы настоятельно рекомендуем пользование этими графиками, так как в большинстве планерные крылья с переменным по толщине профилем являются аэродинамически закрученными, и изгибающие моменты, получаемые из предположения пропорциональности нагрузки хордам, могут значительно отличаться от истинных изгибающих моментов, высчитанных на основе графиков. По тем же соображениям автору не удалось на примере показать, какую ошибку допускают конструкторы при обычном расчете. Очень возможно, что обычные допущения не всюду идут в пользу прочности и некоторые сечения крыльев в существующих конструкциях недостаточно прочны-  [c.8]


Смотреть страницы где упоминается термин Прочность при переменных изгибающих нагрузках : [c.361]    [c.183]    [c.75]    [c.188]    [c.82]    [c.259]    [c.76]    [c.516]   
Смотреть главы в:

Резьбовые и фланцевые соединения  -> Прочность при переменных изгибающих нагрузках



ПОИСК



Нагрузка переменная

Нагрузки на изгиб

Прочность при переменных нагрузках



© 2025 Mash-xxl.info Реклама на сайте