Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение осей, движущихся в теле

Конечно, для рассмотрения устойчивости велосипеда необходимо выключить оказываемое на него воздействие велосипедиста. Велосипедист должен ехать, не двигая ни руками, ни телом его влияние на велосипед должно сказаться только весом его тела. В этом труде можно найти подробный материал также и о других применениях и о математическом обосновании теории волчка.  [c.208]

Применение законов трения. Распространим теперь теорию, основанную на этих экспериментах, на случай, когда тело движется (или стремится двигаться) произвольным образом в плоскости. По известной теореме кинематики, которая будет доказана в начале следующей главы, такое движение может быть представлено как вращение тела вокруг некоторого мгновенного центра. Пусть О — мгновенный центр вращения. Тогда произвольная точка Р тела движется (или стремится двигаться) в направлении, перпендикулярном ОР.  [c.142]


В 1743 г. был опубликован основной труд Даламбера по механике — его знаменитый Трактат о динамике . Первая часть Трактата посвящена построению аналитической статики. Здесь Даламбер фор.мулирует основные принципы механики , которыми он считает принцип инерции , принцип сложения движений и принцип равновесия . Принцип инерции сформулирован отдельно для случая иокоя и для случая равномерного прямолинейного движения. Принцип сложения движений представляет собой закон сложения скоростей по правилу параллелограмм,а. Принцип равновесия сформулирован в виде следующей теоремы Если два тела, обладающие скоростями, обратно пронорциональными их массам, имеют противоположные направления, так что одно тело не может двигаться, не сдвигая с места другое тело, то между этими телами будет иметь мест равновесие . Во второй части трактата, называемой Общий иринциидля нахождения движения многих тел, произвольным образом действующих друг на друга, а также некоторые применения этого принципа , Даламбер предложил общий метод составления дифференциальных уравнешгй движения любых материальных систем, основанный на сведении задачи динамики К статике. Здесь для любой системы материальных точек формулируется правило, названное впоследствии принципом Даламбера , согласно которому приложенные к точкам системы силы мон<но разложить на действующие , т. е. вызывающие ускорение системы, и потерянные , необходимые для равновесия системы.  [c.195]

Формула или закон, известный обычно как закон квадрата синуса сопротивления воздуха Ньютона, относится к силе, действующей на наклонную плоскую пластину, омываемую равномерным воздушным потоком. Его много обсуждали в связи с проблемой полета в действительности его нельзя найти в работах Ньютона. Его вывели другие исследователи на основании метода вычисления, используемого Ньютоном при сравпении сопротивления воздуху тел различной геометрической формы. В тридцать четвертом ноложении своей книги он рассчитал полную силу, действующую на поверхность сфер, а также на цилиндрические и конические тела, вычислив и добавив силы, вызванные воздействием частиц воздуха, которые предположительно двигаются но прямой линии до тех пор, пока не ударяются о поверхность. Та же мысль, примененная к расчету силы, действующей на наклонную плоскую пластину, приводит к формуле  [c.19]

Замечательно, что первые высказывания древних философов иа этот счет относятся к движению тел, а не к равновесию их. Сравнительная медленность движений, наблюдавшихся в то время, при полном отсутствии правильных представлений об инертности тел и движении по инерции (материя косна, всякое движение поддерживается силой и прекращается после ее исчезновения), не позволили древним обнаружить основное гидроаэродинамическое явление — сопротивление воды и воздуха движущимся в них телам. Наоборот, практика использования ветра для приведения в движение парусных кораблей, точно 1ак же как и применение весел для той же цели в безветрие, наталкивали наблюдателя на мысль о движущей роли воздуха и воды. Не удивителыш поэтому, что в известном трактате Физика великого античного философа Аристотеля (384—322 гг. до н. н. э.), где можно найти первые в истории науки следы аэродинамических идей, выска- >.ывается утверждение о пропульсивном, как мы сейчас говорим, т. е. двигательном действии воздуха на метательный снаряд. По воззрениям того времени снаряд не мог двигаться сам, без непрерывного приложения к нему силы. Аристотель находит источник этой силы в действии на снаряд воздуха, смыкающегося за снарядом и толкающего его вперед. Вместе с тем Аристотель ничего не говорит о направленном против движения действии воздуха на лобовую часть — сопротивлении снаряда. Пройдет много веков и Ньютон создаст теорию сопротивления, основанную на ударном действии частиц воздуха на лобовую часть обтекаемого тела, но при этом не будет учитывать указанную Аристотелем силу, действующую на кормовую часть тела, и только в середине XVIII в. Даламбер соединит эти две силы и придет к поразившему в свое время умы парадоксу об отсутствии сопротивления в идеальной жидкости. В свете этого исторического факта можно правильно оценить глубину идей Аристотеля, как бы они ни казались нам в настоящее время односторонними и далекими от действительности.  [c.18]


Другой вид применения теоремы энергии получается в случаях, когда постороннее тело вызывает в первоначально покоящейся жидкости вихревую систему, движение которой можно указать, как это бывает, например, при поступательном движении несущих поверхностей или пропеллера. В этих случаях систему отсчета выбирают так, чтобы она покоилась относительно невозмущенной жидкости. Пусть постороннее тело, например пропеллер, двигается вперед (в направлении своей оси) со скоростью V и врзншется с равномерной угловой скоростью о. Если вращающий момент на валу пропеллера равен М, а тяга пропеллера равна 5, то приращение энергии жидкости в единицу времени, измеренное в системе отсчета, в которой невозмущенная жидкость покоится, равно  [c.218]

Автоматизация чертежно-графических работ производится с помощью электронно-вычислительной техники (ЭВТ). Первая попытка использовать ЭВМ для автоматизации графических работ в Советском Союзе была сделана проф. С. А. Фроловым в 1962 г. В настоящее время все большее развитие получает разработка на базе ЭВМ различных систем автоматизации проектных работ (САПР), в том числе создание автоматизированных рабочих мест конструктора и проектировщика (АРМ). Примене ие автоматизированного оборудования, управляемого с помощью средств электронно-вычислительных машин (ЭВМ), повышает качество и производительность конструкторского труда. Применение вычислительной техники для расчетных и информационных задач намного опередило применение этой техники при выполнении графических работ. В настоящее время вопрос об автоматизации графических работ находится в центре внимания многих НИИ. Этому содействует Единая система ЭВМ (ЕС ЭВМ), созданная специалистами СССР и стран — участников СЭВ. Для изготовления чертежей применяют графопостроители, электронно-графические планшеты, графические дисплеи и другое оборудование, облегчающее труд конструктора. Графопостроители бывают планшетного и рулонного типов. Все графопостроители состоят из электромеханического двухкоординатного регистрирующего построителя (ДРП) и электронной системы приема и переработки графических данных. Координатная система ДРП планшетного типа включает в себя траверсу и перемещающуюся вдоль нее каретку с пишущим узлом (рис. 380). Пишущий узел двигается в направлении оси у, а каретка— в направлении оси х. Пишущий узел имеет перьедержа-тели, состоящие из нескольких пишущих элементов, число которых достигает шести. Пишущие элементы (самописцы) могут заряжаться разноцветными пастами и чернилами. Каждый из них вычерчивает линии или символы одной толщины и одного цвета. В чертежном автомате рулонного типа (рис. 381) пишущий узел 2 перемещается с помощью шагового двигателя по направлению оси X, а ведущий барабан перемещает бумагу / вдоль оси у. При одновременном перемещении пишущего узла и бумаги оба движения складываются, образуя требуемую траекторию. Команды, управляющие чертежным автоматом, наносят на перфоленту, магнитную ленту или передают по каналу ЭВМ.. Для ввода в ЭВМ данных о чертеже необходимо преобразовать изображение  [c.311]


Смотреть страницы где упоминается термин Применение осей, движущихся в теле : [c.110]    [c.302]    [c.53]    [c.334]   
Смотреть главы в:

Теоретическая механика Том 2  -> Применение осей, движущихся в теле



ПОИСК



Другие задачи применение осей, движущихся относительно тела и относительно пространства трение и сопротивление среды

Очки

Очко 58, XIV

Применение осей, движущихся в пространстве и в теле

Пример применения осей, движущихся относительно тела и относительно пространства, для вывода общих уравнений движения тела вращения, закрепленного в точке своей оси



© 2025 Mash-xxl.info Реклама на сайте