Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диффузия вихрей в вязкой несжимаемой жидкости

Рассмотрим задачу о диффузии вихрей в вязкой несжимаемой жидкости в предположении, что движение жидкости плоскопараллельное и жидкость занимает всю плоскость ). Рассматриваемое движение — неустановившееся. Пусть в начальный момент времени f = О жидкость движется потенциально везде, за исключением полюса О, представляющего собой след на плоскости движения бесконечного прямолинейного концентрированного вихря с циркуляцией Г.  [c.113]


Диффузия вихрей в вязкой несжимаемой жидкости 305  [c.305]

Вихри в идеальной несжимаемой жидкости, как известно из 8 гл. 5, не возникают и не уничтожаются. Иначе обстоит дело в вязкой жидкости. Здесь имеет место явление, называемое диффузией вихрей и состоящее в распространении с течением времени зоны влияния одиночного вихря при одновременном уменьшении величины вектора угловой скорости и в пределе — в полном затухании завихренности.  [c.336]

Из всего, что выше было сказано, ясно, что в потоках вязкой несжимаемой жидкости теорема Гельмгольца ( 23) о со.хранении вихрей уже перестает быть справедливой. Как было показано на примере диффузии вихря, нормальные к плоскости движения прямые в начальном безвихревом двилеении становятся вихревыми линиями, а в дальнейшем при / — оо перестают ими быть.  [c.534]

Распространение завихренности или, что то же самое, диффузия вихря, в условиях турбулентного движения несжимаемой вязкой жидкости представляет собой достаточно трудную задачу, вследствие чего естественно начать рассмотрение с одномерного случая. Известная задача о диф( )узии прямолинейной вихревой нити в потоке несжимаемой жидкости не является при турбулентном движении жидкости одномерной из-за зависимости коэффициента турбулентной вязкости 1 от расстояния от стенки, вследствие чего приходится ограничиться рассмотрением диффузии вихря в обтекающем бесконечную пластину турбулентном потоке.  [c.646]

Если Ц. с. равна кулю по любому контуру, проведённому внутри жидкости, то течение жидкости— звихре-вое, или потенциальное, и потенциал скоростей—однозначная ф-ция координат. Если же Ц. с. по нек-рым контурам отлична от нуля, то течение жидкости либо вихревое в соответственных областях, либо безвихревое, но с неоднозначным потенциалом скоростей (область течения многосвязная). В случае потенц. течения в многосвязной области Ц, с. по всем контурам, охватывающим одни и те же твёрдые границы, имеет одно и то же значение. Ц. с. широко используется как характеристика течений идеальной (без учёта вязкости) жидкости. По динамич. теореме Томсона (Кельвина) Ц. с. по замкнутому жидкому контуру остаётся постоянной во время движения, если, во-первых, жидкость является идеальной, во-вторых, давление (газа) жидкости зависит только от плотности, в-третьих, массовые силы потенциальны, а потенциал однозначен. Для вязкой жидкости Ц. с. со временем изменяется вследствие диффузии вихрей. При плоском циркуляц. обтеканий контура идеальной несжимаемой жидкостью, при к-ром скорость на бесконечности отлична от нуля, воздействие жидкости на контур определяется по Жуковского теореме и прямо пропорционально значению Ц. с.,  [c.441]


Если Ц. с. равна пулю по любому контуру, проведенному внутри жидкости, то течение жидкости — безвихревое, или потенциальное течение, и потенциал скоростей — однозначная ф-ция координат. Если же Ц. с, по нек-рым контурам отлична от нуля, то течение жидкости — либо вихревое в соответственных областях, либо безвихревое, но с неоднозначным потенциалом скоростей (область течения многосвязная). В случае потенциального течения в многосвязной области Д. с. по всем контурам, охватывающим одни и те же твердые границы, имеет одно и то же значение. Д, с, широко иснользуется как характеристика течений идеальной (без учета вязкости) жидкости. По динамич. теореме Томсона (Кельвина) Д. с, по замкнутому жидкому контуру остается постоянной во все время движения, если 1) жидкость является идеальной, 2) давление (газа) жидкости зависит только от плотности и 3) массовые силы — потенциальны, а нотенциал однозначен. Для вязкой жидкости Д. с. со временем изменяется вследствие диффузии вихрей. При плоском циркуляционном обтекании контура идеальной несжимаемой жидкостью, при к-ром скорость на бесконечности отлична от нуля, воздействие жидкости на контур определяется но Жуковского теореме и прямо пропорционально значению Ц. с., плотности жидкости и значению скорости потока на бесконечности. При плоском обтекании идеальной жидкостью крыла с острой задней кромкой величипа Д. с. определяется Чаплыгина — Жуковского постулатом. При обтекании крыла конечного размаха, хорда к-рого в плане меняется, Д. с. вдоль размаха крыла также меняется.  [c.401]


Смотреть страницы где упоминается термин Диффузия вихрей в вязкой несжимаемой жидкости : [c.225]   
Смотреть главы в:

Механика сплошной среды. Т.2  -> Диффузия вихрей в вязкой несжимаемой жидкости



ПОИСК



Вихрь

Вихрь в вязкой жидкости

Диффузия

Диффузия в в жидкостях

Диффузия вихрей

Диффузия вихрей в вязкой жидкости

Жидкость вязкая

Жидкость несжимаемая



© 2025 Mash-xxl.info Реклама на сайте