Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые задачи устойчивости прямоугольных пластин

Некоторые задачи устойчивости прямоугольных пластин  [c.177]

В главе сформулированы и решены некоторые конкретные задачи устойчивости упругих прямых стержней и прямоугольных пластин. Такие задачи встречаются при расчете тонкостенных элементов ракетных конструкций. Рассматриваются три круга вопросов определение критических нагрузок для идеально правильных стержней и пластин, влияние начальных геометрических несовершенств и поведение упругих стержней и пластин после потери устойчивости.  [c.183]


Устойчивости прямоугольных изотропных пластинок, ослабленных вырезами, при действии сдвигающей нагрузки, посвящены публикации Р. В. Кондратьева и И. Н. Преображенского [55—57]. В них изложены результаты аналитического решения на основе обобщенных функций задачи об общей устойчивости перфорированной пластинки, нагруженной равномерно распределенным усилием сдвига. Основываясь на энергетических соображениях применительно к задаче об общей потере устойчивости, авторы использовали следующие допущения неоднородность докритического напряженного состояния для некоторых случаев существенно не сказывается на величине критического усилия сдвига, напряжения в пластине не превосходят предела пропорциональности. Использованный при исследовании метод был изложен ранее в работе [4].  [c.297]

Рассмотрим ход решения задачи на примере сварной двутавровой балки (рис. 8.21, а). Усадочные силы вызывают в продольном направлении сжатие стенки и поясов, которые могут потерять устойчивость. Стенка представляет собой прямоугольную пластину (рис. 8.21, б) шириной и длиной /, длинные стороны которой считаем находящимися в жесткой заделке, так как они приварены к поясам. Усадочные силы на некотором расстоянии от концов создают равномерное сжатие а ж = Рус/Р, где Р — площадь поперечного сечения балки. Поэтому пластина нагружена  [c.223]

В монографии представлены результаты теоретических и численных исследований, выполненных авторами в области механики и вычислительной математики слоистых тонкостенных анизотропных оболочек, а также неклассическая математическая модель нелинейного деформирования тонкостенных слоистых упругих композитных пластин и оболочек, отражающая специфику их механического поведения в широкой области изменения нагрузок, геометрических и механических параметров, структур армирования. Предложен и реализован эффективный метод численного решения краевых задач неклассической теории многослойных оболочек, основанный на идеях инвариантного погружения. Получены решения задач начального разрушения, устойчивости, свободных колебаний слоистых конструкций распространенных форм — прямоугольных и круговых пластин, цилиндрических панелей, цилиндрических и конических оболочек. Дана оценка влияния на характеристики напряженно-деформированного состояния и критические параметры устойчивости таких факторов, как поперечные сдвиговые деформации, обжатие нормали, моментность основного равновесного состояния, докритические деформации. Проведены систематические сравнения полученных решений с решениями, найденными при использовании некоторых других известных в литературе неклассических моделей, в том числе и в трехмерной постановке.  [c.2]


Следует добавить, что дифференциальные уравнения, описывающие процессы изгиба и выпучивания длинной прямоугольной пластинки по цилиндрической поверхности, образующая которой параллельна длинной стороне пластинки, лишь значениями некоторых коэффициентов (см. ниже) отличаются от соответствующих уравнений изгиба и устойчивости слоистых балок и стержней. Точно также уравнения, описывающие процессы изгиба и выпучивания длинной панели по цилиндрической поверхности, аналогичны соответствующим уравнениям изгиба и устойчивости арки. Так возникают пары близких между собой систем дифференциальных уравнений, характеризующих механическое поведение существенно различных элементов конструкций. Ясно, что методы исследования краевых задач для этих близких систем уравнений одинаковы, а результаты, полученные при решении одной из них, сохраняют свое значение и для другой. Поэтому сформулированные ниже выводы о характере и степени влияния поперечных сдвигов, обжатия нормали, вида краевых условий на характеристики напряженно-деформированного состояния и критические параметры устойчивости слоистых длинных пластин и панелей остаются справедливыми для балок, стержней и арок.  [c.94]


Смотреть страницы где упоминается термин Некоторые задачи устойчивости прямоугольных пластин : [c.209]    [c.134]    [c.24]   
Смотреть главы в:

Основы теории упругости и пластичности  -> Некоторые задачи устойчивости прямоугольных пластин

Сопротивление материалов с основами теории упругости и пластичности  -> Некоторые задачи устойчивости прямоугольных пластин



ПОИСК



Некоторые задачи

Пластина Устойчивость

Пластина прямоугольная

Устойчивость прямоугольных пластин



© 2025 Mash-xxl.info Реклама на сайте