Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения движения невязкой жидкости (уравнения Эйлера)

Дифференциальные уравнения движения невязкой жидкости (уравнения Эйлера)  [c.82]

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ НЕВЯЗКОЙ ЖИДКОСТИ (УРАВНЕНИЕ ЭЙЛЕРА  [c.77]

Уравнения (20.2) представляют собой дифференциальные уравнения движения невязкой жидкости в форме Эйлера (1775 г.).  [c.65]

Это и есть дифференциальные уравнения движения невязкой жидкости, предложенные Л. Эйлером в 1775 г.  [c.84]

Система уравнений (3.8) есть дифференциальные уравнения движения невязкой жидкости, выведенные Л. Эйлером в 1775 г. и ставшие основными уравнениями гидродинамики.  [c.53]


ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ИДЕАЛЬНОЙ (НЕВЯЗКОЙ) ЖИДКОСТИ (УРАВНЕНИЯ ЭЙЛЕРА)  [c.74]

Уравнения (3.28)—это дифференциальные уравнения движения идеальной (невязкой) жидкости. Они устанавливают связь между проекциями объемных, массовых сил и скоростей, давлением и плотностью жидкости и являются основой для изучения многих основных вопросов гидродинамики. Их называют уравнениями Эйлера.  [c.91]

Дифференциальные уравнения движения реальной (вязкой) жидкости можно получить, дополнив уравнения Эйлера (3.27), выведенные для идеальной (невязкой) жидкости, составляющими сил внутреннего трения, обусловленными вязкостью.  [c.94]

Леонард Эйлер (1707—1783 гг.) один из крупнейших математиков мира. Швейцарец по происхождению, он длительное время жил и работал в Петербурге (1727—1741 гг.), и с 1766 г. до конца жизни являлся действительным членом Петербургской академии наук. Помимо выдающихся математических работ, л. Эйлер опубликовал ряд основополагающих результатов по гидромеханике, в том числе дифференциальные уравнения равновесия и движения невязкой жидкости.  [c.29]

Сущность этого метода заключается в формулировке и использовании условий, накладываемых на уравнение движения в напряжениях, с целью выделения частного рещения для расчета сплощного или разрывного течения невязкой и идеальной жидкости. Причем эти условия можно применять как для дифференциальных уравнений, так и для их интегралов. Контрольным результатом этого метода для сплощного течения идеальной жидкости должно быть известное уравнение Эйлера, а также его рещения. Новые уравнения, получаемые данным методом, нуждаются, как правило, в экспериментальной проверке.  [c.45]

Большое разнообразие уравнений требует установления связей между ними и их согласования с принятыми допущениями. На схеме рис. 3.6 показаны некоторые связи между уравнениями движения для вязкой ньютоновской, невязкой и идеальной жидкости. Систему (3.6) можно будет проинтегрировать после дополнения ее тремя дифференциальными уравнениями, составленными из параметров деформационного движения для вязкой ньютоновской жидкости. Для невязкой жидкости возможно существование двух путей расчета интегрирование системы (2.1) с получением общего рещения и рещение задачи с помощью частных случаев системы (2.1), одним из которых является система Эйлера (1.3). Рещение частной задачи идеальной жидкости можно получить тремя способами ( на примере задачи сплощной текучей среды)  [c.92]


При установившемся движении невязкой жидкости на ее элементарный объем кроме внешних массовых сил и сил давления (см. гл. II, 2, рис. 5) действуют еще силы инерции, обусловленные изменением скорости вдоль потока (в главном направлении). Взяв за основу дифференциальные уравнения равновесия жидкости Эйлера (22) и прибавив к ним с обратным знаком проекции сил инерции, отнесенные к единице массы, duJdt, dUyldt и duJdt получим дифференциальные уравнения движения Эйлера  [c.43]

Гидромеханика (гидравлика) как наука сформировалась в XVIII веке в Российской академии наук работами Д. Бернулли (1700—1782), Л. Эйлера (1707—1783) и М. В. Ломоносова (1711 — 1765). М. В. Ломоносов открыл закон сохранения вещества в движении, который является физической основой уравнений движения жидкости. В своих работах О вольном движении воздуха, в рудниках примеченном , Попытка теории упругой силы воздуха , а также разработкой и изготовлением приборов для измерения скорости и направления ветра М. В. Ломоносов заложил основы гидравлики как прикладной науки. Л. Эйлер составил известные дифференциальные уравнения относительного равновесия и движения жидкости (уравнения Эйлера), а также предложил способы описания движения жидкости. Д. Бернулли получил уравнение запаса удельной энергии в невязкой жидкости при установившемся движении (уравнение Бернулли), являющееся основным в гидравлике.  [c.4]


Смотреть главы в:

Гидравлика и аэродинамика  -> Дифференциальные уравнения движения невязкой жидкости (уравнения Эйлера)



ПОИСК



283 — Уравнения жидкости

Движение дифференциальное

Дифференциальное уравнение в Эйлера

Дифференциальное уравнение движения

Дифференциальное уравнение, движени

Дифференциальные уравнения движения жидкости

Дифференциальные уравнения движения идеальной (невязкой) жидкости (уравнения Эйлера)

Жидкость невязкая

Невязка

Уравнение Эйлера

Уравнение движения невязкой жидкости

Уравнения движения жидкости

Эйлер

Эйлера для движения невязкой

Эйлера для движения невязкой жидкости

Эйлера уравнение движения

Эйлера эйлеров

Эйлеровы дифференциальные уравнения движения



© 2025 Mash-xxl.info Реклама на сайте