Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициенты переноса и математические модели течений газов

Глава 3. КОЭФФИЦИЕНТЫ ПЕРЕНОСА И МАТЕМАТИЧЕСКИЕ МОДЕЛИ ТЕЧЕНИЙ ГАЗОВ  [c.94]

Параллельно с этим упрощенным подходом разработана усложненная математическая модель геофизической турбулентности, для которой, наряду с базисными гидродинамическими уравнениями для среднего движения, выведены эволюционные уравнения переноса для одноточечных вторых моментов пульсирующих в потоке термогидродинамических параметров многокомпонентной реагирующей газовой смеси. Модель включает в себя эволюционные уравнения переноса для составляющих тензора турбулентных напряжений Рейнольдса, составляющих векторов турбулентного потока тепла и турбулентной диффузии, уравнения переноса для турбулентной энергии и дисперсии пульсаций энтальпии среды, а также уравнения переноса для парных корреляций пульсаций энтальпии и состава смеси и смешанных парных корреляций пульсирующих концентраций отдельных компонентов смеси. Такой подход обеспечивает возможность расчета сложных течений многокомпонентных реагирующих газов с переменной плотностью, когда существенны диффузионный перенос турбулентности, конвективные члены и предыстория потока, и потому более простые модели (основанные на идее изотропных коэффициентов турбулентного обмена) оказываются неадекватными.  [c.313]


В монографии дается систематическое изложение современного подхода к инвариантному моделированию развитых турбулентных течений многокомпонентных химически активных газов, применительно к специфике математического моделирования верхних атмосфер планет. Основное внимание уделено проблеме взаимовлияния химической кинетики и турбулентного перемешивания, а также разработке полуэмпирического метода расчета коэффициентов турбулентного обмена в стратифицированных сдвиговых течениях, основанного на использовании эволюционных уравнений переноса для вторых моментов пульсирующих термогидродинамических параметров. Возможности разработанных моделей многокомпонентной турбулентности природных сред продемонстрированы в ряде вычислительных примеров, описывающих процессы кинетики и тепло-массопереноса в верхних атмосферах планет.  [c.2]

Изучение важнейших физико-химических механизмов в условиях турбулентного течения многокомпонентной реагирующей газовой смеси, ответственных за пространственно-временные распределения и вариации определяющих макропараметров (плотности, скорости, температуры, давления, состава и т.п.), особенно эффективно в сочетании с разработкой моделей турбулентности, отражающих наиболее существенные черты происходящих при этом физических явлений. Турбулентное движение в многокомпонентной природной среде отличается от движения несжимаемой однородной жидкости целым рядом особенностей. Это, прежде всего, переменность свойств течения, при которой среднемассовая плотность, различные теплофизические параметры, все коэффициенты переноса и т.п. зависят от температуры, состава и давления среды. Пространственная неоднородность полей температуры, состава и скорости турбулизованно-го континуума приводит к возникновению переноса их свойств турбулентными вихрями (турбулентный тепло- и массоперенос), который для многокомпонентной смеси существенно усложняется. При наличии специфических процессов химического и фотохимического превращения, протекающих в условиях турбулентного перемешивания, происходит дополнительное усложнение модели течения. В геофизических приложениях часто необходимо также учитывать некоторые другие факторы, такие, как влияние планетарного магнитного поля на слабо ионизованную смесь атмосферных газов, влияние излучения на пульсации температуры и турбулентный перенос энергии излучения и т.п. Соответственно, при моделировании, например, состава, динамического и термического состояния разреженных газовых оболочек небесных тел теоретические результаты, полученные в рамках традиционной модели турбулентности однородной сжимаемой жидкости, оказываются неприемлемыми. В связи с этим при математическом описании средних и верхних атмосфер планет возникает проблема разработки адекватной модели турбулентности многокомпонентных химически реагирующих газовых смесей, учитывающей сжимаемость течения, переменность теплофизических свойств среды, тепло- и массообмен и воздействие гравитационного поля и т.п. Эти проблемы рассматриваются в данной части монографии.  [c.9]



Смотреть главы в:

Физическая газодинамика реагирующих сред  -> Коэффициенты переноса и математические модели течений газов



ПОИСК



Газа течение

Коэффициент переноса

Математические модели

Математические модели течений газа

Модели течений при

Переносье

Течение газов

Ток переноса



© 2025 Mash-xxl.info Реклама на сайте