Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Открытие нейтрона. Его свойства

Бурное развитие физики атомного ядра приходится на вторую четверть 20-го столетия, особенно начиная с открытия нейтрона (1932). Интенсивно изучаются свойства ядерной материи. Выдвигаются и намечаются решения проблемы структуры ядра, проблемы внутриядерных взаимодействий и процессов. В этот период было открыто много новых элементарных частиц и античастиц. Атомные ядра и процессы, протекающие в них, и составляют предмет исследования ядерной физики.  [c.7]


Историю открытия элементарных частиц и изучения их свойств можно разбить на два этапа. На первом этапе, окончившемся в 1932 г., были открыты шесть элементарных частиц фотон, электрон, протон, нейтрон, позитрон и нейтрино. История открытия и свойства этих частиц будут кратко охарактеризованы в 75.  [c.542]

Исторически именно на основании этих свойств р-спектров Паули в 1930 г. (т. е. еще до открытия нейтрона ) предсказал существование нейтрино — на четверть столетия раньше его непосредственного экспериментального наблюдения.  [c.236]

Открытие нейтрона. Его свойства  [c.529]

ОТКРЫТИЕ НЕЙТРОНА И ЕГО СВОЙСТВА  [c.190]

История открытия нейтрона весьма характерна для путей развития ядерной физики вообще. Резерфорд еще в 1920 г. а основании общих соображений предсказал существования частицы с 2=0 и массой, примерно равной массе протона, и даже обрисовал некоторые ее свойства.  [c.190]

Историю открытия элементарных частиц и исследования их свойств можно (довольно условно) разбить на четыре этапа. На первом этапе, окончившемся в 1932 г., было открыто шесть перечисленных выше элементарных частиц фотон, электрон, протон, нейтрон, позитрон, нейтрино (последняя только теоретически). История открытия и свойства этих частиц были кратко охарактеризованы выше. Более подробно о некоторых из них будет рассказано в 100—103.  [c.133]

Таблица 28.1 не охватывает всех известных к моменту издания справочника антиферромагнетиков. Составители стремились дать общее представление о свойствах различных типов антиферромагнитных кристаллов, начиная от наиболее известных и хорошо изученных антиферромагнитных диэлектриков и кончая недавно открытыми сверхпроводящими соединениями. Важным, хотя и не необходимым, критерием отбора материала служил факт установления в соединении антиферромагнитной структуры методом нейтронной дифракции. Не было возможности с максимальной полнотой привести данные о некоторых группах соединений. Так, практически не представлена (кроме двух веществ) обширная группа  [c.652]

Таким образом, производство медленных нейтронов несложно. Естественно, возникла задача изучения их свойств, что осуществляется со времени их открытия и по сегодняшний день все более мощными средствами. Первые опыты производились методом поглощения, путем отбора медленных нейтронов. Когда говорят о медленных нейтронах, не нужно полагать, что все они имеют одинаковую скорость скорость всех их мала, но неодинакова. Их можно разделить на полосы по скоростям или по энергиям одни, скажем, несколько более быстрые, другие несколько более медленные. Первые указания на особые свойства медленных нейтронов по отношению к поглощению были получены в опытах по поглощению, которые мы здесь описывать не будем в настоящее время такие опыты производятся гораздо более мощными методами. Укажем теперь способы производить медленные нейтроны с одинаковой скоростью, т. е. монохроматические нейтроны, имеющие одинаковую энергию. Есть два способа получения монохроматических нейтронов. Первый из них основывается на применении искусственного источника, например циклотрона. Этот метод состоит в следующем. В циклотроне получается поток ионов, падающих на бериллиевую мишень. В момент падения они рождают нейтроны. Но в циклотроне можно так модулировать источник, чтобы облучение не происходило непрерывно, а совершалось через определенные промежутки времени. Надо открывать источник только на короткие мгновения через правильные промежутки времени, что достигается электрической модуляцией. Таким путем в циклотроне получаются прерывистые пучки ионов, которые, падая на бериллиевую мишень, дают мгновенные волны нейтронов, с модуляцией, регулируемой по произволу. Когда эти нейтроны замедляются, например в парафине, и затем падают на детектор, помещенный на некотором расстоянии, то ясно, что из всех замедленных нейтронов первыми придут на парафин замедлившиеся меньше, а последними — замедлившиеся больше. Отбирая электрическими методами те, которые пришли через определенный интервал времени, мы получаем нейтро-  [c.107]


ЛИЙ. Делались радиевые эталоны единиц радиоактивности. Позже, после открытия нейтрона (1932 год, Д. Чедвик), появились радий-бериллиевые источники нейтронов. Продолжались исследования свойств самого радия и его соединений.  [c.49]

В интерференции и дифракции проявляются волновые свойства света. После открытия этих явлений на них смотрели сначала как на доказательство исключительно волновой природы света. Такая точка зрения оказалась недостаточной. В XX веке были открыты корпускулярные свойства света, а затем волновые свойства обыкновенных частиц-, электронов, протонов, нейтронов, атомов, молекул И пр. Как это ни парадоксально, природа света и вещества оказалась двойственной корпускулярно-волновой. С открытием этого факта связан коренной пересмотр физических воззрений, приведший к тюстроению квантовой механики. От этого, однако, значение интерференционных И дифракционных явлений не уменьшилось. В наши дни интерференция и дифракция света имеют важные практические применения, например в спектроскопии и метрологии.  [c.188]

Несмотря на то что свойства Ж - и 2 -бозонов 6HLaH предсказаны раньше, их экспе- Рис. 73. Распад нейтрона риментальное открытие состо- д четырехвершинное 6 — трехвершинное ялось ТОЛЬКО В 1983 г., когда.  [c.215]

Этот процесс представляет собой расщнрен-ное воспроизводство ядерного горючего. Изотоп плутония относительно стабилен и имеет период полураспада более 24 тыс. лет. Но поскольку плутоний также не встречается в природе, этот период тоже не так уж долог. 2зэрц даже в большей степени, чем подвержен тепловой нейтронной реакции деления, и на одно деление у него образуется в среднем большее число нейтронов. Эти свойства были открыты на самых начальных этапах исследований ядерного деления, и во время второй мировой войны предпринимались интенсивные усилия наладить с помощью реакторов получение плутония в количествах, измеряемых килограммами. Первая ядерная бомба была взорвана 16 июля 1945 г. в Нью-Мехико около г. Аламогордо. Она представляла собой устройство, созданное на принципе деления плутония.  [c.40]

Параллельно под руководством И. В. Курчатова проводились исследования, в процессе которых открыты весьма интересные явления, имевшие важнейшее значение для работы реакторов и понимания действия излучения на вещество. При изучении физических свойств графита в условиях интенсивного нейтронного облучения были обнаружены значительные их изменения уменьшение теплопроводности и электропроводности,, изменение объема и механической прочности. Далее было установлено, что при отжиге облученного графита выделяется скрытая энергия, запасенная кристаллической решеткой. Эти исследования позволили выяснить природу радиационных нарушений в графите и решить ряд практических задач, возникших Т1ри проектировании и эксплуатации ядерных реакторов с графитовым замедлителем.  [c.5]

До 1930-х гг. для описания наблюдаемых фиэ. явлений достаточно было рассматривать гравитац. и зя,-магн. взаимодействия. Первые играют решающую роль в явлениях космич. масштабов, а вторые ответственны за строение атомов, молекул и за всё многообразие внутр. свойств твёрдых тел, жидкостей и газов. Наличие С. в. проявилось, когда была открыта сложная структура атомных ядер, состоящих из протонов и нейтронов (нуклонов). Эксперимент показывал, что взаимодействие между нуклонами гораздо сильнее электромагнитного, поскольку типичные анергии связи нуклонов в ядрах порядка неск. МэВ, в то время как энергии связи в атомах порядка неск, зВ, Кроме того, эти силы, в отличие от электромагнитных и гравитационных, обладают малым радиусом действия см. В квантовой теории радиус действия сил обратно пропорционален массе частиц, обмен к-рыми обусловливает взаимодействие. Поэтому X. Юкава (Н. Yukawa) в 1935 высказал предположение о существовании тяжёлых квантов — мезонов, переносчиков С. в. В 1947 в космических лучах были открыты первые, ваиб. лёгкие из таких частиц — л-мезоны.  [c.497]

Открытие новых микроскопич. частиц постепенно разрушило эту простую картину строения материи. Однако вновь открываемые частицы по своим свойствам были в ряде отношений близки к первым четырём известным частицам либо к протону и нейтрону, либо к электрону, либо к фотону. До тех пор пока кол-во таких частиц было не очень велико, сохранялось убеждение, что все они играют фундам. роль в строении материи, и их включали в категорию Э. ч. С нарастанием числа частиц от этого убеждения пришлось отказаться, но традиц. назв. Э. ч. за ними сохранялось.  [c.596]


Состояния ядер, входящих в состав одного изотопич. мультиплета, наз. аналоговыми состояниями. Вследствие изотопич. инвариантности ядерных сил структура (чисто ядерная) этих состояний одинакова, а все отличия в их свойствах обусловлены эл.-магн. взаимодействием. Напр., энергии связи аналоговых состояний одинаковы с точностью до различия кулоновских энергий в ядрах данного мультиплета. С увеличением Z возрастает роль кулонов-ского взаимодействия. Поэтому в тяжёлых ядрах точность изоспина как квантового числа уменьшается. Тем не менее следы изоспиновой симметрии проявляются в том, что в разл. ядерных реакциях наблюдаются открытые в 1961 состояния, нестабильные по отношению к испусканию нуклона, к-рые являются аналогами основного или низших стабильных возбуждённых состояний соседнего ядра с меньшим Z (аналоговые резонансы). Напр., при рассеянии протонов на стабильном ядре А с числами нейтронов и протонов yV и Z (Го= Tz = (N—Z)/2) наблюдаются резонансы, отвечающие образованию составного ядра А + (Z4-1, ЛО в возбуждённом состоянии с квантовыми числами T=To + 4z, Гг = Го-72, входящем в тот же изотопич. мультиплст, что и осн. состояние соседнего ядра А + 1 (N-hl, Z), r=7 z=7 o+ /2- Однако эксперименты показали, fjo аналоговые резонансы имеют тонкую структуру, K-paji свидетельствует о том, что имеет место смешивание аналогового состояния, характеризуемого изоспином о + /г с др. возбуждёнными состояниями составного ядра, отвечающими изоспину Г= Го—V2  [c.687]

За последнее время нозможность открытия бериллийсодержащих минералов значительно возросла благодаря применению прибора, с помощью которого присутствие бериллия обнаруживается при облучении образца руды Y-излучением. Этот прибор определяет интенсивность нейтронной эмиссии (ем. главу Физические свойства ), возникающей при наличии бериллия в руде.  [c.79]

Среди возмон цых открытий будущего можно предполагать, что появится новое ядерное горючее, обладающее лучшими ядерными, химическими и металлургическими свойствами. Как мы ВИДС.ЛИ, число нейтронов, приходящееся на одно деление, и эффективное сечение деления, Зр являются двулга наиболее важ-.яымп ядерными свойствами. В гл. XI первого тома бы.ло отмечено  [c.324]

Радиоводород [тритий]. Свойства трития подробно обсуждаются в работах [134, 154]. Это вещество было открыто Резерфордом и др. [114] в реакции 1Н (с1, р) хН , или О (с1, р) Т. Некоторое время было неясно, который из изобаров ( Н или зНе ) является стабильным, однако после открытия р-активности трития и обнаружения стабильного Не в естественном гелии вопрос был разрешен [4, 5, 6, 7, 1, 2, 3]. Период полураспада трития составляет около 12 лет [112, 46]. Его распространенность в естественном водороде не должна превышать [32]. Излучение трития обладает исключительно малой энергией—верхняя граница спектра составляет всего лишь 18 кеУ [30]. Тритий, повидимому,, получается в больших количествах в котлах при радиационном захвате нейтронов дейтерием, но при этом получаются препараты с низкой удельной активностью [170]. Чистый тритий можно получить в циклотроне при реакции Ве (ё, 1) 22Не или в котле при реакции зЕ1 (п, а) Т [17, 10]. Другие приводящие к тритию ядерные реакции приведены в работе [20] Образование трития при различных реакциях, которые происходят с присутствующими в атмосфере ядрами под действием быстрых космических нейтронов, а также не связанные с его дочерним веществом Не геохимические вопросы подробно обсуждаются в работе [88]. Быстрые тритоны можно использовать в момент образования, для того чтобы вызвать ядерные реакции [82]. Реакция О—Т приводит к нейтронам очень большой энергии.  [c.89]

Такое парадоксальное положение еще более расширилось после того, как Дэвиссоном (1881—1958) и Джермером (1896—1971) в 1927 г. была открыта дифракция электронов. Оказалось, что волновые свойства присущи и частицам обычного вещества, — идея, развивавшаяся французским физиком де Бройлем (р. 1892) за несколько лет до открытия дифракции электронов. Развитие квантовой механики позволило частично объяснить возникшее парадоксальное положение ценой отказа от основного положения классической физики — принципа причинности в форме детерминизма. А исследования в области физики высоких энергий (иначе называемой физикой элементарных частиц) показали, что если энергия частиц превосходит их энергию покоя, то частицы могут рождаться, исчезать или превраш.аться друг в друга. В этом отношении они ведут себя подобно ( ютонам, которые могут излучаться или поглощаться. В квантовой электродинамике фотоны рассматриваются как кванты электромагнитного поля. Поэтому в физике высоких энергий целесообразно говорить об электронно-позитронном, мезонном, нуклон-ном и прочих полях, квантами которых являются электроны, позитроны, мезоны, протоны, нейтроны и т. д. Таким образом вопрос  [c.31]

Периодичность значений электрических квадрупольных моментов ядер не находит объяснения в рамках модели жидкой капли. И это не единичный случай. Многочисленные экспериментальные данные, касающиеся различных областей ядерной физики, указы- вают на периодическую зависимость свойств ядер от числа содер- жащихся в них нуклонов. Ядра, содержащие 2, 8, 20, (28), 50, 82, 126 нуклонов одного сорта (протонов или нейтронов), оказываются особенно стабильными. Эти числа после их открытия были названы магическими , поскольку были не понятны причины стабильности подобных ядер.  [c.101]


Смотреть страницы где упоминается термин Открытие нейтрона. Его свойства : [c.118]    [c.658]    [c.79]   
Смотреть главы в:

Ядерная физика  -> Открытие нейтрона. Его свойства



ПОИСК



Нейтрон

Нейтрон открытие

Нейтроны свойства

Открытие

Открытые

Свойство открытости



© 2025 Mash-xxl.info Реклама на сайте