Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптические спектры атомов

В настоящей главе рассмотрим спектры атомов. Вид спектра определяется строением их электронной оболочки и внешними факторами— температурой, давлением, магнитными и электрическими полями и т. д. Раздел спектроскопии, который изучает оптические спектры атомов, называется атомной спектроскопией, а раздел спектроскопии, который изучает спектры молекул, называется молекулярной спектроскопией.  [c.224]


Современные фотонные представления сформировались в первой четверти нашего столетия на основе исследований по тепловому излучению тел и оптическим спектрам атомов суш ественную роль сыграли при этом также эксперименты по фотоэффекту и эффекту Комптона.  [c.17]

ОПТИЧЕСКИЕ СПЕКТРЫ АТОМОВ  [c.794]

Старейшим методом определения спинов и магнитных моментов ядер является изучение сверхтонкой структуры оптических спектров атомов. Явление сверхтонкой структуры состоит в том, что магнитный момент ядра, взаимодействуя с магнитным моментом электронной оболочки, расщепляет электронные уровни за счет того, что энергия взаимодействия этих магнитных моментов зависит от их взаимной ориентации. Расщепление же электронных уровней приводит к тому, что оказывается расщепленной на несколько линий и спектральная частота соответствующего атомного электромагнитного излучения. Выясним закономерности этого расщепления.  [c.48]

Сергей Эдуардович Фриш ОПТИЧЕСКИЕ СПЕКТРЫ АТОМОВ  [c.2]

Все типы химических связей обусловлены взаимодействием между валентными электронами атомов (VI.2.9.2 ). Это подтверждается резк.им изменением оптических спектров атомов при образовании молекул. Линейчатые спектры атомов определяются состоянием внешни Х валентных электронов (VI.2.3.Г). Изменения в этих спектрах при образовании молекул означают, что меняются состояния валентных электронов. В то же время характеристические рентгеновские спектры (V.3.6.3°), зависящие от электронов, расположенных на внутренних слоях атомов (VI.2.9.4°), не изменяются при вступлении атомов в химические соединения. В образовании химических связей участвуют электроны, состояния которых легко изменить при затрате небольшой энергии. Такими электронами являются внешние валентные электроны.  [c.459]

Таблица Менделеева содержит смесь горизонтальных рядов, т.е. семь периодов и восемь вертикальных рядов, названных группами. К периодически изменяющимся свойствам, которые определяются внешними электронными оболочками, относятся наряду с химическими свойствами также атомный объем, напряжение ионизации, температура плавления, коэффициент расширения, строение оптических спектров и др. Элементы, расположенные в одном вертикальном столбце, обладают близкими свойствами при перемещении в направлении горизонтального ряда свойства элементов постоянно изменяются, но характер их изменения повторяется в следующем периоде. С каждым периодом в электронной оболочке атома начинается новое главное квантовое число, которое равно номеру периода. Это иллюстрирует схема для подуровней первых четырех электронных оболочек (рисунок 3.28). Первая оболочка относится к самому легкому элементу водороду, с порядковым номером 1, т.е, он имеет 1 электрон на внешней оболочке. Следующий элемент в этом ряду гелий имеет 2 электрона на той же первой оболочке. Литий имеет 3 электрона 2 электрона на Is подуровне и 1 электрон на 2s подуровне. Таблица Менделеева содержит смесь горизонтальных рядов, т.е. семь периодов и восемь вертикальных рядов, названных группами. К периодически изменяющимся свойствам, которые определяются <a href="/info/188633">внешними электронными</a> оболочками, относятся наряду с химическими свойствами также атомный объем, <a href="/info/228098">напряжение ионизации</a>, <a href="/info/32063">температура плавления</a>, <a href="/info/108198">коэффициент расширения</a>, строение <a href="/info/347503">оптических спектров</a> и др. Элементы, расположенные в одном вертикальном столбце, обладают близкими свойствами при перемещении в направлении горизонтального ряда <a href="/info/78159">свойства элементов</a> постоянно изменяются, но характер их изменения повторяется в следующем периоде. С каждым периодом в <a href="/info/13887">электронной оболочке</a> атома начинается новое <a href="/info/22717">главное квантовое число</a>, которое равно номеру периода. Это иллюстрирует схема для подуровней первых четырех <a href="/info/13887">электронных оболочек</a> (рисунок 3.28). Первая оболочка относится к самому легкому элементу водороду, с <a href="/info/536897">порядковым номером</a> 1, т.е, он имеет 1 электрон на <a href="/info/737885">внешней оболочке</a>. Следующий элемент в этом ряду гелий имеет 2 электрона на той же первой оболочке. Литий имеет 3 электрона 2 электрона на Is подуровне и 1 электрон на 2s подуровне.

Изложенные выше закономерности, установленные на опыте, показывают, что законы абсорбции света в основном определяются свойствами атома или молекулы, поглощающей свет, хотя действие окружающих молекул может значительно исказить результат. Особенно в случае жидких и твердых тел влияние окружения иногда радикально меняет абсорбирующую способность атома вследствие того, что под действием полей окружающих молекул поведение электронов, определяющих оптические свойства атомов, изменяется до неузнаваемости. Особенно разительно в этом отношении поведение металлов. Действительно, хорошо известно, что пары металлов, даже таких, как, например, серебро или натрий, представляют собой столь же хорошие изоляторы, как и пары (газы) других веществ, тогда как металлическое серебро или натрий являются наилучшими проводниками электричества. Таким образом, поведение наиболее слабо связанных с атомами электронов в изолированных атомах металлов и в конденсированном металле резко различно. В соответствии с этим металлический натрий не обнаруживает никаких признаков спектра поглощения, характерного для паров натрия и изображенного на рис. 28.14.  [c.568]

Спектральный анализ, основанный на использовании оптических спектров испускания атомов и ионов, называют эмиссионным спектральным анализом. Эмиссионные линейчатые спектры, излучаемые атомами и ионами, не зависят от вида химических соединений, из которых состоит исследуемое вещество. Поэтому эти спектры применяются для определения элементов, входящих в состав анализируемого образца, и их процентного содержания (атомный или элементный анализ).  [c.5]

Мы подробно остановимся только на дискретных спектрах атомов и молекул в оптическом диапазоне длин волн, которые возникают при переходах электронов в пределах внешней (валентной) оболочки, а так-  [c.794]

Известно, что оптический спектр изолированргого атома состоит из отдельных линий. При образовании молекулы оптический спектр усложняется — возникает полосатый спектр. При переходе вещества в твердое состояние изменяется характер спектра он может стать сплошным. В отличие от этого линейчатый рентгеновский спектр атома не изменяется он не зависит от того, к какому веществу относится. По-видимому, характеристические рентгеновские лучи порождаются не слабо связанными с ядром валентными (оптическими) электронами, а электронами, расположенными близко к ядру.  [c.159]

Электронные уровни энергии — это уровни, связанные с движением электронов относительно ядер. Нужно различать уровни энергии электронов внутренних оболочек с энергиями связи от десятков до десятков тысяч электрон-вольт, переходы между которыми дают рентгеновские спектры и изучаются методами рентгеновской спектроскопии, и уровни энергии внещних электронов в атомах и молекулах с энергиями связи порядка немногих электрон-вольт. Переходы между уровнями энергии внешних (валентных) электронов дают оптические спектры в видимой и ультрафиолетовой областях, которые и являются основным источником сведений об этих уровнях.  [c.227]

В качестве еще одного примера рассмотрим спектры поглощения и люминесценции молекулы красителя родамина 6G. Молекулярные оптические спектры обусловлены значительно более сложной картиной переходов, нежели спектры атомов или ионов. В этом случае начальное и конечное состояния представляют собой не отдельные электронные уровни, а совокупности колебательных и вращательных уровней, каждая из которых соответствует определенному электронному состоянию молекулы. Чем сложнее молекула, тем богаче указанная совокупность колебательно-вращательных состояний, тем плотнее расположены уровни в этой совокупности. Все это объясняет, почему спектры поглощения н люминесценции молекул красителей обычно не обнаруживают тонкой структуры и характеризуются большой шириной (порядка 0,1 мкм). Вид этих спектров для молекулы родамина 6G приведен на рис. 8.5, а (1—спектр поглощения, 2 — спектр люминесценции). Рисунок хорошо ИЛЛЮСТ- fy 1  [c.193]

Потенциалом ионизации частицы называют ту минимальную энергию, которая затрачивается на перевод ее валентного электрона в непрерывный спектр. В табл. 19.1 представлены значения потенциала ионизации нейтральных атомных частиц, полученные главным образом в результате экстраполяции к границе непрерывного спектра атома серий оптических переходов, инициируемых с помощью различных источников возбуждения. При этом либо находят предельное значение известной функции (например, формулы Ритца), аппроксимирующей высоковозбужденные (ридберговские) уровни энергии атомной частицы, либо сравнивают реальные уровни с водородоподобными, внося поправки на поляризацию атомного остова [1]. Поэтому помимо потенциала ионизации атома, эВ, приведены также предельные значения для серий оптических переходов, см , отсчитанные от уровня основ-  [c.411]


Мультиплетность спектров атомов с тремя оптическими элек1ронами (В,  [c.249]

Как отмечалось в предисловии, разбор ргнтгеновых спектров не входит в задачу настоящей книги. Тем не менее ниже дается краткое изложение основных свойств рентгеновых спектров, так как их близкая связь с оптическими спектрами помогла установить характер расположения электронов в электронных оболочках атомов. Общая схема распределения электронов в атомах впервые в общих чертах была указана Бором именно на основании рентгеноскопического материала, собранного в то время преимущественно Костером.  [c.315]

Изложение начинается с рассмотрения основных привдипов спектроскопии, т. е. с изучения элементарного акта поглощения или испускания фотона одиночным двухуровневым атомом или примесным центром. Необходимость подобного вступления обусловлена тем, что хотя вероятности соответствующих процессов и рассматриваются обычно в курсах квантовой механики, однако при этом остаются в тени некоторые принципиальные вопросы, возникшие в практической спектроскопии одиночного примесного центра, где большую роль играют флуктуации измеряемой величины, отсутствующие в спектроскопии молекулярных ансамблей. Флуктуации проявляют себя, например, в прыжках спектральной линии, когда мы имеем дело с поглощением света одиночной молекулой в полимере или стекле. Такие прыжки линии служат основой для стохастического подхода к проблеме уширения оптических спектров.  [c.9]

Проведенные исследования позволили создать новый эталон секунды, основанный на способности атомов излучать и поглощать энергию во время перехода между двумя энергетическими состояниями в области радиочастот. С появлением высокоточных кварцевых генераторов и развитием дальней радиосвязи появилась возможность реализации нового эталона секунды и единой шкалы мирового времени. В 1967 г. XIII Генеральная конференция по мерам и весам приняла новое определение секунды как интервала времени, в течение которого совершается 9 192 631 770 колебаний, соответствующих резонансной частоте энергетического перехода между уровнями сверхтонкой структуры основного состояния атома цезия-133 при отсутствии возмущения внешними полями. Данное определение реализуется с помощью цезиевых реперов частоты [5 15]. Репер, v nn квантовый стандарт частоты, представляет собой устройство для точного воспроизведения частоты электромагнитных колебаний в сверхвысокочастотных и оптических спектрах, основанное на измерении частоты квантовых переходов атомов, ионов или молекул. В пассивных квантовых стандартах используются частоты спектральных линий поглощения, в активных — вынужденное испускание фотонов частицами. Применяются активные квантовые стандарты частоты на пучке молекул аммиака (так называемые молекулярные генераторы) и атомов водорода (водородные генераторы). Пассивные частоты выполняются на пучке атомов цезия (цезиевые реперы частоты).  [c.35]


Смотреть страницы где упоминается термин Оптические спектры атомов : [c.608]    [c.277]    [c.25]    [c.50]    [c.419]    [c.425]    [c.83]    [c.40]    [c.357]    [c.32]    [c.838]    [c.8]    [c.321]    [c.324]    [c.644]    [c.292]    [c.641]    [c.421]    [c.424]    [c.7]    [c.40]    [c.61]    [c.329]    [c.629]    [c.495]    [c.713]   
Смотреть главы в:

Физические величины. Справочник  -> Оптические спектры атомов



ПОИСК



Мир атома

Оптический спектр

Спин-орбитальное взаимодействие. Мультиплетность энергетических уровней Мультиплетность линий излучения. Правило отбора для L. Правило отбора для Правило отбора для J. Мультиплетная структура спектров щелочных элеменМультиплетность спектров щелочно-земельных элементов. Мультиплетность спектров атомов с тремя оптическими электронами. Правило мультиплетностей Эффект Зеемана



© 2025 Mash-xxl.info Реклама на сайте