Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Давление вращающегося твердого тела на ось вращения

Давление вращающегося твердого тела на ось вращения  [c.319]

Если при решении задачи приходится пользоваться формулами, содержащими центробежные моменты инерции твердых тел (например в задачах на определение давлений вращающегося твердого тела на ось вращения (глава X, 3), в задачах об ударе по телу, вращающемуся вокруг неподвижной оси (глава XII, 1), в задачах динамики твердого тела, вращающегося вокруг неподвижной точки (глава X, 8)), то для упрощения решения задач следует специально выбрать направление осей декартовых координат. Для этого требуется выяснить, нет ли в твердом теле оси материальной симметрии либо плоскости материальной симметрии. При наличии в твердом теле оси материальной симметрии надо одну из координатных осей направить по этой  [c.245]


Задачи на определение динамических давлений вращающегося твердого тела на ось вращения рекомендуется решать в следующем порядке  [c.375]

ДАВЛЕНИЕ ВРАЩАЮЩЕГОСЯ ТВЕРДОГО ТЕЛА НА ОСЬ ВРАЩЕНИЯ  [c.413]

Следовательно, для того чтобы давления, оказываемые вращающимся твердым телом на подшипники, не зависели ни от угловой скорости, ни от углового ускорения тела, необходимо и достаточно, чтобы ось вращения тела совпадала с одной из его главных центральных осей инерции.  [c.522]

Вывод. Вращение твердого тела не вызывает дополнительного давления на ось (сверх статических реакций) тогда и только тогда, когда неподвижной осью вращения будет одна из главных центральных осей инерции тела. Иными словами, для уравновешивания сил инерцни вращающегося твердого тела необходимо и достаточно, чтобы осью вращения была одна из главных центральных осей инерции тела.  [c.403]

Динамические реакции и давления. Для того чтобы определить реакции оси, обратимся к общему случаю движения тела с закрепленной осью, находящегося под действием каких угодно сил (п. 5). Изменяя направления реакций на противоположные, найдем, как мы знаем, давления вращающегося тела на связь, В согласии с общими рассуждениями п. 4, мы ограничимся вычислением для этих давлений результирующей силы — R и результирующего момента — М относительно некоторого центра О, который мы предположим здесь неподвижным и лежащим на оси вращения твердого тела S. Более того, отвлекаясь от статических составляющих R, М, мы будем рассматривать исключительно динамические составляющие — —М , определяемые из равенств  [c.17]

При определении динамических давлений на ось твердого тела, вращающегося вокруг неподвижной оси, целесообразно применять теоремы о движении центра масс и об изменении главного момента количеств движения материальной системы либо пользоваться методом кинетостатики (в случае плоской фигуры, перпендикулярной к оси вращения, достаточно применить теорему о движении центра масс).  [c.566]

Пассивная система ориентации и стабилизации — это система, которая не требует на борту КА источника энергии для своей работы. Для создания управляющих моментов она использует физические свойства средьд, окружающей КА (гравитационное или магнитное поле, солнечное давление, аэродинамическое сопротивление), или свойство свободно вращающегося твердого тела сохранять неподвижной в инерциальном пространстве ось вращения. В пассивных системах не только ориентация, но и стабилизация КА, например демпфирование собственных колебаний, достигается без использования активных управляющих устройств.  [c.6]


В.П. Алексеев и А.П. Меркулов пришли к выводу о перестройке вдоль камеры энергоразделения периферийного квазипотенци-ального вихря в вынужденный приосевой закрученный поток, вращающийся по закону, близкому к закону вращения твердого тела (т = onst) [13, 14, 115, 116]. Отмеченные исследования были проведены в 60-е годы и их основополагающие результаты, а также результаты зарубежных исследователей [227, 234, 237, 246, 255, 261, 265, 268] обобщены в монографиях [35, 94, 164]. В большинстве проведенных исследований измере аничивались лишь установлением качественных зависимостей распределения параметров по объему камеры энергетического разделения в виде функций от режимных и геометрических параметров. Сложность проведения зондирования в трехмерном интенсивно закрученном потоке определяется не только малыми размерами камеры энергоразделения, но и радиальным градиентом давления, вызывающим перетекание газа по поверхности датчика, а следовательно, искажающим данные измерений. В некоторых исследованиях [208] предпринята попытка определения расчетным методом поправки на радиальные перетечки с последующим учетом при построении кривых (эпюр) распределения параметров в характерных сечениях. Опубликованные данные порой имеют противоречивый характер и трудно сопоставимы, так как практически всегда имеются отличительные признаки в геометрии основных элементов и соотношении характерных определяющих процесс параметров.  [c.100]


Смотреть страницы где упоминается термин Давление вращающегося твердого тела на ось вращения : [c.2]    [c.126]    [c.241]   
Смотреть главы в:

Сборник задач по теоретической механике  -> Давление вращающегося твердого тела на ось вращения

Теоретическая механика в примерах и задачах. Т.2  -> Давление вращающегося твердого тела на ось вращения

Теоретическая механика в примерах и задачах Том 2 Динамика издание восьмое  -> Давление вращающегося твердого тела на ось вращения



ПОИСК



Вращение твердого тела

Вращение твердых тел

Давление иа ось вращающегося тела

Давление на ось вращающегося твердого тела

Давление на ось вращающегося тел

Тело вращения

Тело давления



© 2025 Mash-xxl.info Реклама на сайте