Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение жидкости безвихревое линейное

В гл. 3 были установлены признаки потенциального движения. Следует отметить, что движение, строго соответствующее условиям безвихревого (потенциального) движения, в природе и технике отсутствует. Но в ряде случаев можно применить понятие потенциальное движение, условно идеализируя реально происходящее движение вязкой жидкости. Во многих задачах значительная часть области, занятой движущейся жидкостью, находится в условиях практически безвихревого движения. При обтекании твердых тел реальной жидкостью всю область движения делят на две тонкий пограничный слой, примыкающий непосредственно к телу, и внешнюю область, где пренебрегают силами вязкости и движение считают потенциальным. Как будет показано ниже, движение жидкости через оголовок водослива и из-под затвора при больших скоростях также можно считать потенциальным. Движение вязкой жидкости в пористой среде, если рассматривать индивидуально поровые каналы, является вихревым, с уменьшающимися к стенкам местными скоростями в каждом поровом канале. Но, рассматривая осредненное по пространству, как было указано в гл. 27, движение (при линейном законе фильтрации), справедливо можно считать его потенциальным.  [c.558]


Теперь рассмотрим те вопросы теории волн на поверхности воды, для решения которых мы желаем применить метод ГИУ. Характерная особенность теории волн на воде заключается в наличии свободной поверхности или границы раздела с другой жидкостью (например, с атмосферой), на которой может поддерживаться волновое движение (где восстанавливающим механизмом является гравитация), даже если основное дифференциальное уравнение, описывающее движение внутри жидкости, будет эллиптическим, например уравнение Лапласа для потенциала скорости ф (v = УФ) в случае безвихревого течения невязкой и несжимаемой жидкости. Такие предположения обычно применяются в задачах о волнах на поверхности воды они существенно нарушаются тогда, когда происходят некоторые особые физические явления, например разрушение волн. Исключая эти явления и некоторые другие эффекты, например поверхностное натяжение и т. д., мы получим [2] для Ф следующее линейное дифференциальное уравнение в частных производных внутри области D, занятой жидкостью  [c.19]

Второй областью применения метода ГИУ является определение движения свободной поверхности непосредственно из основной системы уравнений, в особенности, если на свободной поверхности задаются нелинейные граничные условия. Здесь может также применяться метод ГИУ, поскольку основное уравнение по-прежнему является линейным до тех пор, пока жидкость можно считать невязкой и несжимаемой, а течение безвихревым, нелинейные эффекты будут проявляться только в граничных условиях на свободной поверхности. (Учет сжимаемости приводит к задаче, изучаемой в гидроакустике, которая является областью весьма интенсивного применения метода ГИУ, но обычно рассматривается отдельно от теории поверхностных волн на воде ввиду значительного различия скоростей волн в этих Двух задачах.)  [c.21]

Заметим, что во многих книгах по математической физике [811, [94] рассматривается не уравнение Гельмгольца, а уравнение Лапласа АФ = О, представляющее собой частный случай уравнения Гельмгольца при к = 0. Данное уравнение характеризует безвихревое движение несжимаемой жидкости и поэтому приближенно описывает звуковые процессы на низких частотах, когда длина волны велика по сравнению со всеми линейными размерами.  [c.19]



Смотреть страницы где упоминается термин Движение жидкости безвихревое линейное : [c.136]    [c.31]    [c.317]    [c.33]   
Гидравлика Изд.3 (1975) -- [ c.76 ]



ПОИСК



Движение безвихревое

Движение жидкости безвихревое

Движение жидкости линейное



© 2025 Mash-xxl.info Реклама на сайте