Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ковалевской случай интегрируемости уравнений движения

Ковалевская С. В. 165, 168 Ковалевской случай интегрируемости уравнений движения 165, 166, 168, 171  [c.547]

Прошло уже 110 лет с тех пор, как С. В. Ковалевская открыла новый случай интегрируемости уравнений движения тяжелого твердого тела с неподвижной точкой (1888 г.). Однако до сих пор о качественных свойствах движения тела в этом случае известно очень мало. Все параметры движения выражены через время при помощи квадратур, однако они настолько громоздки, что не позволяют непосредственно изучить вращение твердого тела. Были даже поставлены эксперименты с волчком Ковалевской (проф. Мерцалов, см. [30]), но при этом результаты получились очень запутанными и не привели к выявлению существенных закономерностей движения. Запутанность движения оси динамической симметрии в этих экспериментах объясняет, по-видимому, тот факт, что в общем случае множество D ( 4) на неподвижной единичной сфере является двумерной областью, и траектория точки р ( 4) заполняет эту область всюду плотно.  [c.224]


Развитие результатов Эйлера в области динамики твердого тела было проведено в дальнейшем главным образом русскими учеными . Знаменитая русская женщина-математик С. В. Ковалевская (1850—1891) обнаружила новый случай интегрируемости уравнений Эйлера в динамической задаче о движении твердого тела около неподвижной точки. В своей работе Ковалевская задается целью отыскать такие классы движений тяжелого твердого тела, для которых проекции мгновений угловой скорости на подвижные оси выражаются в виде некоторых функций времени, имеющих особые точки только в форме полюсов первого порядка. Этим путем она нашла решение новой, труднейшей задачи о движении несимметричного гироскопа, и ее работа вызвала появление обширной литературы как в нашей стране, так и за границей.  [c.33]

Ляпунов, Александр Михайлович (6.6.1857-3.11.1918) — знаменитый русский математик и механик, создатель теории устойчивости движения. Нашел случай интегрируемости уравнений Кирхгофа о движении твердого тела в жидкости. В обширном мемуаре 1888 г указал и исследовал на устойчивость винтовые движения твердого тела в жидкости. Внес ясность в вопрос о корректности рассуждений Ковалевской, связанных с однозначностью решений в интегрируемых случаях, предложив при этом свой метод,  [c.24]

Наконец, Ковалевская в работе, премированной Академией наук (A ta mathemati a, т. XII), нашла еще один случай интегрируемости уравнений движения твердого тела вокруг неподвижной точки.  [c.137]

Случай интегрируемости Ковалевской. В работе, премированной в 1888 г. Парижской Академией наук и помещенной в т. XII A ta mathema-ti a, Ковалевская рассмотрела новый случай интегрируемости уравнений движения тяжелого твердого тела вокруг неподвижной точки. Приведем сначала форму уравнений движения, из которой исходила Ковалевская.  [c.186]

При отыскании случаев интегрируемости уравнений динамики совершенно новая идея была внесена в аналитическую механику К. Вейерштрассом. Рассматривая задачу о движении тяжелого твердого тела вокруг неподвижной точки, он поставил вопрос о том, когда уравнения этой задачи могут быть проинтегрированы в мероморфных функциях времени Подобное применение теории функций комплексного переменного к аналитической механике сразу дало существенные результаты работы С. В. Ковалевской, открывшей новый случай интегрируемости уравнений Эйлера, и работы П. Пенлеве по интегрируемости уравнений второго порядка, приведшие к открытию семейств новых трансцендентных аналитических функций.  [c.24]



Смотреть страницы где упоминается термин Ковалевской случай интегрируемости уравнений движения : [c.66]   
Курс теоретической механики Том 2 Часть 2 (1951) -- [ c.165 , c.166 , c.168 , c.171 ]



ПОИСК



Движение в случае G2 ВТ

Интегрируемость

Ковалевская

Ковалевской случай

Ковалевской случай интегрируемости



© 2025 Mash-xxl.info Реклама на сайте