Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Параметр взаимодействия тройной системы

Вычисления уравнения состояния, проведенные для аргона методом молекулярной динамики, показали хорошее совпадение с экспериментом практически для любых плотностей вплоть до тройной точки. Вместе с тем при увеличении плотности согласие с экспериментальными данными ухудшается. Обычно это рассматривается как указание на существенность вклада многочастичных взаимодействий. Для эффективного их учета считают двухчастичный потенциал зависящим от плотности. В связи с этим встает вопрос о правомерности использования двухчастичного потенциала для описания взаимодействия в реальной системе многих частиц. В ряде работ было показано, что даже не зависящий от плотности двухчастичный потенциал является эффективным, учитывающим многочастичные взаимодействия. Действительно, например, параметры потенциала Леннард—Джонса определяются на основе тех или иных экспериментальных данных, которые отражают все взаимодействия, существующие в системе, а поэтому и эти параметры эффективно зависят от всех видов взаимодействий в системе. График истинного (двухчастичного) потенциала взаимодействия будет несколько глубже используемого на практике потенциала Леннард—Джонса >.  [c.206]


Параметр взаимодействия в бинарных системах А В 96, 97 определение 92, 93 тройной системы А1—Оа—Аз 104 Парциальная моляльная свободная энергия 90  [c.360]

Если для описания равновесия жидкость—жидкость в тройной системе используется уравнение НРТЛ, то оно будет иметь девять настраиваемых параметров бинарного взаимодействия, в то время как уравнение ЮНИКВАК — только шесть. В настоящее время для получения необходимых значений параметров пытаются использовать данные только по тройным системам, что является, однако, опасной затеей, поскольку невозможно в результате получить [[абор всеобъемлющих параметров. В этом контексте слово всеобъемлющие означает то, что с помощью таких параметров могут быть описаны также данные по равновесию для пар компонентов. Хайдёманн и др. [37] показали что, если наборы параметров определены без должной тщательности, то расчетные результаты могут оказаться необычными и странными. Хотя в этой области еще и не накоплено достаточного опыта, однако все указывает на то, что всегда лучше для определения параметров бинарного взаимодействия использовать бинарные данные. Поскольку часто оказывается, что наборы параметров бинарного взаимодействия не могут быть определены единственным образом, то следует для отбора лучшего комплекта из ряда таковых использовать данные по тройным или еще  [c.335]

Описание сильно неравновесных состояний, а также вычисление кинетич. коэф. производятся с помощью кинетического уравнения Больцмана. Это ур-ние представляет собой интегродифференц. ур-ние для одночастичной ф-ции распределения (в квантовом случае — для одночастичной матрицы плотности, или статистич. оператора). Оно содержит члены двух типов. Одни описывают изменение ф-ции распределения при движении частиц во внеш. полях, другие — при столкновениях частиц. Именно столкновения приводят к возрастанию энтропии неравновесной системы, т, е. к релаксации. Замкнутое, т. е. не содержащее др. величин кинетич. ур-ние, невозможно получить в общем виде. При его выводе необходимо использовать малые параметры, имеющиеся в данной конкретной задаче. Важнейшим примером является кинетич. ур-ние, описывающее установление равновесия в газе за счёт столкновений между молекулами. Оно справедливо для достаточно разреженных газов, когда длина свободного пробега велика по сравнению с расстояниями между молекулами. Конкретный вид этого ур-ния зависит от эфф. сечения рассеяния молекул друг на друге. Если это сечение известно, ур-ние можно решать, разлагая искомую ф-цию по ортогональным полиномам. Таким способом можно вычислить кинетич. коэф. газа, исходя из известных законов взаимодействия между молекулами. Кинетич. ур-ние учитывает только парные столкновения между молекулами и описывает только первый неисчезающий член разложения этих коэф. по плотности газа. Удалось найти и более точное ур-ние, учитывающее также тройные столкновения, что позволило вычислить следующий член разложения.  [c.672]


Второе допущение состоит в том, что параметр плотности п = пг много меньше единицы или, другими словами, что радиус взаимодействия много меньше среднего расстояния между частицами. Благодаря этому допущению оказалось возможным оборвать цепочку ББГКИ на уровне двухчастичной функции распределения, пренебрегая тройными столкновениями. Приближенная форма (3.1.25) двухчастичной функции распределения в теории Больцмана содержит оператор 5 оо(12), который описывает мгновенные столкновения двух частиц. Это приводит к тому, что интеграл столкновений Больцмана обеспечивает сохранение локальной кинетической энергии, в то время как в плотных системах должна сохраняться полная энергия.  [c.174]

Концепция избыточной энергии Гиббса особенно полезна для многокомпонентных систем, потому что во многих случаях может быть сделан обеспечивающий хорошую точность переход от бинарных систем к многокомпонентным, в результате которого в конечном выражении для содержатся только параметры бинарного взаимодействия. Когда это имеет место, достигается большая экономия по проведению эксперимента, так как требуются данные не для самой многокомпонентной смеси, а только по ее бинарным составляющим. Например, коэффициенты активности в тройной смеси (состоящей из компонентов 1, 2, 3) с хорошей точностью часто могут быть рассчитаны только по экспериментальным данным для трех бинарных смесей, состоящих из компонентов 1 и 2, 1 и 3, 2 и 3, Многие физические модели для g бинарных систем учитывают только попарные межмолекулярные взаимодействия, т. е. столкновение двух (но не более) молекул. Радиусы молекулярного взаимодействия в неэлектролитах невелики, поэтому часто оказывается допустимым рассматривать взаимодействия только между ближайшими молекулами, а затем суммировать все эти попарные взаимодействия, Полезным следствием таких упрощающих допущений является то, что при переходе к тройным (или высшим) системам требуется информация только о бинарных, т. е, двухчленных взаимодействиях констант, характеризующих тройные (или высшие) взаимодействия, не появляется. Однако не для всех физических моделей используются указанные упрощения часто требуются дополнительные допущения, если конечное выражение для должно содержать только те постоянные, которые рассчитываются по бинарным данным.  [c.288]


Смотреть страницы где упоминается термин Параметр взаимодействия тройной системы : [c.230]    [c.111]    [c.335]    [c.336]   
Лазеры на гетероструктурах (1981) -- [ c.104 ]



ПОИСК



Параметр системы

Тройные системы



© 2025 Mash-xxl.info Реклама на сайте