Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волновой в унитарном случае

В шредингеровском представлении волновые функции являются матричными элементами основной непрерывной серии унитарных представлений некомпактных вещественных форм комплексных полупростых групп Ли, взятыми между состояниями с определенными квантовыми числами (обобщенными векторами Уиттекера). В тр же время наличие гамильтонова формализма для рассматриваемых систем (V. 3.1) позволяет, как и в классическом случае (см. V. 3), применить обычные методы теории возмущений. При этом первый член в гамильтониане (III. 2.14) играет роль свободной части, тогда как второй, снабженный множителем л, описывает взаимодействие в системе с постоянной X. В полной аналогии с классическим рассмотрением ряды теории возмущений также оказываются конечными полиномами по X и воспроизводят точное решение соответствующей системы. Используемые построения существенным образом основываются на теории представлений алгебр и групп Ли и для одномерного случая окончательные результаты формулируются полностью в их терминах.  [c.229]


Сверхмультиплет см. Унитарный мультиплет Сверхтонкое расщепление 65 Свободный пробег 305 Секулярное равновесие 109 Сечение геометрическое 321 Сигма-гиперон (2) 602, 609—610 Сильного поля случай 70 Сильное взаимодействие 201, 485, 537 Симметричная волновая функция 276 518  [c.718]

При рассмотрении тг (i-рассеяния основная цель состояла в изучении сходимости данной итерационной схемы для вычисления длины рассеяния к ее точному значению, рассчитанному в [5] на основе уравнений Фаддеева. При расчете первой итерации (диаграмма рис. 1 а) была установлена применимость статического предела теории ио = = /i/(/i + m) —) 0. Оказалось, что в первом приближении длина тг (i-рассеяния в отличие от рассмотренного ранее [12, 13] случая ггб/-рассеяния существенно меньше точных значений [5]. Причина этого, как было показано в конце п. 4, лежит в специфике изоспиновой структуры данной задачи. На случайность малости первого приближения указывает также то, что сумма первых двух итераций (см. табл. 2) практически совпадает с точным значением a d- Из табл. 2 следует, что рассматриваемый ряд сходится к точным результатам [5] точнее, чем соответствующий ряд в ТМР. Это можно рассматривать как следствие выполнения условия унитарности на каждой итерации. Для уточнения полученных здесь значений для длины тг (i-рассеяния нужно учесть р-волновое тгЛ -взаимодействие, рассчитать диаграмму рис. 1 в, а также оценить вклад от высших итераций. Полученные результаты (см. рис. 3) для фаз тг (i-рассеяния свидетельствуют о их сильной чувствительности к параметрам тгЛ -взаимодействия. Отметим, что все основные соотношения п. 4 с поправками на спин-изоспиновую зависимость применимы для описания рассеяния пиона на более тяжелых ядрах, таких как Li [22], которые допускают двухкластерное представление.  [c.297]

Получен ряд решений задачи дифракции в общем трехмерном случае. Приведены интегральные представления для оператора распространения электромагнитного поля, сводящие решение прямой задачи к четырем преобразованиям Фурье. При этом доказанное свойство унитарности оператора распространения позволяет обобпщть скалярные итерационные алгоритмы синтеза фазовых волновых полей на случай точного электромагнитного расчета. На основе указанных интегральных представлений, разработан градиентный метод решения обратной задачи восстановления волновых полей.  [c.236]

Прежде чем перейти к анализу этого нiибoлe важного случая, рассмотрим сначала структуру звезды. Для волновых векторов класса П из (96.36) звезда к уже содержит вектор —к, но к и неэквивалентны. Тогда унитарную пространственную  [c.270]



Математическая теория рассеяния Общая теория (1994) -- [ c.176 , c.264 ]



ПОИСК



Унитарность

Унитарный код



© 2025 Mash-xxl.info Реклама на сайте