Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дренаж блуждающих токов

Электродренажная защита - наиболее эффективная защита от коррозии под действием блуждающих токов. Основной принцип её состоит в устранении анодных зон на подземных сооружениях. Это достигается отводом дренажом блуждающих токов с участков анодных зон сооружения в рельсовую часть цепи, имеющую отрицательный или знакопеременный потенциал, или на отрицательную сборную шину отсасывающих линий тяговой подстанции. Потенциал сооружения смещается в отрицательную сторону, а анодные зоны, вызванные блуждающими токами, ликвидируются. При этом катодные зоны в местах входа блуждающих токов в сооружение сохраняются. Очевидно, что электрический дренаж работает только в том случае, когда разность потенциалов соору жение-элемент рельсовой сети положительна или искусственно становится положительной, т. е. потенциал ПСМ отрицательнее потенциала рельсовой сети.  [c.26]


То же, при дренаже блуждающих токов  [c.217]

При наличии блуждающих токов рекомендуется пробное включение с продолжительной записью потенциала. Для этого применяется передвижная защитная установка с автоматическим регулированием потенциала. Испытание проводится в период наиболее интенсивной работы источников блуждающего тока, например электрифицированной железной дороги. Требуемое напряжение при дренаже блуждающих токов зависит не только от напряжения в цени тока, но и от напряжения трубопровод— рельс. Здесь особенно рекомендуется предусматривать запас по выходным параметрам защитной установки.  [c.219]

Если защитная установка с постоянной настройкой подключается для дренажа блуждающих токов между трубопроводом и рельсом и ее напряжение на выходе настраивается на некоторое определенное значение, то обычно получаются значительные колебания защитного тока и потенциала труба — грунт.  [c.223]

Применение регулируемых установок на защитных станциях дает существенные преимущества, поскольку станции при этом всегда работают в оптимальных условиях. Например, при усиленном дренаже блуждающих токов с регулированием потенциала даже и при пиковых значениях блуждающего тока, вызванных высоким отрицательным потенциалом рельс — грунт, всегда накладывается достаточный защитный ток, тогда как при перерывах в работе электрифицированной железной дороги и соответственно более положительном значении потенциала рельс — грунт протекает только ток, необходимый для достижения защитного потенциала. При этом воздействие на другие сооружения в среднем по времени остается незначительным. Кроме того, на кривой потенциала вдоль трубопровода регламентируется исходная (базовая) точка — потенциал станции катодной защиты. С этим потенциалом могут сопоставляться предельные значения других колеблющихся во вре-ми потенциалов в прочих точках измерения.  [c.224]

Путем установки дренажей блуждающих токов можно увеличить протяженность зоны действия защитной установки. При этом однако устанавливаются более отрицательные потенциалы, что может оказать усиленное влияние на посторонние сооружения.  [c.301]

Чтобы влияние на посторонние сооружения было возможно меньшим, а дополнительный расход энергии — небольшим, целесообразно применять защитные установки с регулированием потенциала. При протяженной зоне влияния блуждающих токов вместо одной станции катодной защиты целесообразно применять несколько станций. Если напряжение между оболочкой кабеля и рельсами превышает 1 В, то в общем случае достаточно применить один дренаж блуждающих токов.  [c.301]

На рис. 14.2 показано распределение потенциалов по длине кабеля при дренаже блуждающих токов. Суммарный ток составляет 70 А, протяженность зоны защиты достигает примерно 1 км.  [c.302]


Все станции катодной защиты почтового ведомства ФРГ проходят контроль и обслуживание через определенные промежутки времени. Чтобы уменьшить затраты труда, на тех защитных установках, которые чаще выходят из строя из-за перегрузок или повышенного напряжения, применяют дистанционный контроль [4]. Приборы для дистанционного контроля систем дренажа или усиленного дренажа блуждающих токов работают по принципу, поясняемому на рис. 14.3.  [c.302]

Рис. 15.2. Дренаж блуждающих токов с частичной катодной защитой кабеля на напряжение 110 кВ в стальном трубопроводе высокого давления без отсоединения заземлителей станции (вариант а по рис. 15.Ц — заземлители станции 2 усиленный дренаж блуждающих токов Рис. 15.2. Дренаж блуждающих токов с частичной <a href="/info/6573">катодной защитой</a> кабеля на напряжение 110 кВ в стальном <a href="/info/319948">трубопроводе высокого давления</a> без отсоединения заземлителей станции (вариант а по рис. 15.Ц — заземлители станции 2 <a href="/info/183421">усиленный дренаж</a> блуждающих токов
Мероприятия по защите кабелей от блуждающих токов аналогичны соответствующим мероприятиям для трубопроводов и описаны в разделе 16.3. Несмотря на низкоомное заземление, при усиленном дренаже блуждающих токов катодная защита от коррозии может быть обеспечена даже на отдаленных участках трассы (рис. 15.2). Полная катодная защита от коррозии также и в зоне заземлителей возможна с применением разъединительных устройств, описанных в разделе 15.2.1.  [c.313]

Почти на всех железных дорогах ФРГ с тягой на постоянном токе положительный полюс преобразовательных тяговых подстанций соединен с контактным проводом или с токоведущим (третьим) рельсом, а отрицательный полюс —с ходовыми рельсами. Такая полярность считается обязательной [9]. Предлагавшаяся ранее система с тремя проводами и переключением полярности по участкам не оправдала себя. Соединение плюсового полюса с ходовыми рельсами технически возможно и прежде при использовании ртутных выпрямителей было даже целесообразным по соображениям защиты от прикосновения (для снижения напряжения прикосновения), но вызывало трудности при осуществлении мероприятий по защите от коррозии типа дренажа или усиленного дренажа блуждающих токов. Поэтому следует рекомендовать всегда соединять минусовой полюс с ходовыми рельсами.  [c.319]

Ток в трубопроводе /и может быть рассчитан по формулам из табл. 24.2. При прямом дренаже блуждающих токов в ходовые рельсы  [c.324]

На рис. 16.6 показано влияние блуждающих токов на трубопровод, проложенный параллельно трамвайной линии, при работе без дренажа и с дренажом блуждающих токов.  [c.328]

Здесь представлено распределение токов и потенциалов для случая движения одного вагона, ток I которого стекает в рельсы в конце участка параллельного расположения рельсов и трубопровода. Вблизи вагона блуждающий ток стекает с ходовых рельсов и натекает через грунт на трубопровод при работе без дренажа этот ток (его направление показано стрелкой) в районе тяговой подстанции вновь стекает с трубопровода и возвращается через грунт к ходовым рельсам, вызывая в этом месте анодную коррозию трубопровода. Кривые / и 2 пока-казывают изменение потенциала рельса и грунта около рельса по отношению к далекой земле. На том участке, где рельсы положительны (с координатой от х=1 до х = 112), происходит катодная, а на участке отрицательных рельсов от //2 до О — анодная поляризация трубопровода. Поляризация трубопровода U—Ur представлена кривой 3. При низкоомном дренаже блуждающего тока к ходовым рельсам перед подстанцией трубопровод принимает здесь потенциал рельсов. Изменение смещенного потенциала вдоль участка параллельного расположения трубопровода и рельсов представлено кривой 4, а изменение тока в трубопроводе — кривой 5. Потенциал труба — грунт при этом может  [c.328]

Рис. 16.6. Воздействие блуждающих токов на трубопровод, проложенный параллельно трамвайной линии, работающей на постоянном токе (напряже-нне по отношению к далекой земле или поляризация) / — рельс (за вычетом потенциала рельс — земля) 2 — грунт поблизости от рельса 3 — трубопровод без дренажа блуждающего тока 4 — трубопровод с низкоомным дренажом блуждающего тока 5 — трубопровод с дренажом блуждающего тока через омическое сопротивление ток в трубопроводе б—без дренажа блуждающих токов 7 — с дренажом Л —с дренажом блуждающих токов 5 — без дренажа блуждающих токов / ток в трубопроводе Рис. 16.6. Воздействие блуждающих токов на трубопровод, проложенный параллельно трамвайной линии, работающей на <a href="/info/461800">постоянном токе</a> (напряже-нне по отношению к <a href="/info/39623">далекой земле</a> или поляризация) / — рельс (за вычетом <a href="/info/39740">потенциала рельс</a> — земля) 2 — грунт поблизости от рельса 3 — трубопровод без дренажа блуждающего тока 4 — трубопровод с низкоомным дренажом блуждающего тока 5 — трубопровод с дренажом блуждающего тока через <a href="/info/161042">омическое сопротивление</a> ток в трубопроводе б—без дренажа блуждающих токов 7 — с дренажом Л —с дренажом блуждающих токов 5 — без дренажа блуждающих токов / ток в трубопроводе

Простой (прямой) дренаж блуждающих токов имеет перед усиленным то преимущество, что для него не требуется питания электро-  [c.330]

Рис. 16.7. Поляризованный дренаж блуждающего тока с выпрямителем GI и регулируемым сопротивлением R Рис. 16.7. Поляризованный дренаж блуждающего тока с выпрямителем GI и регулируемым сопротивлением R
На участке рисунка а представлены записанные параметры без проведения защитных мероприятий. Если рельсы отрицательны по отношению к трубопроводу (i/B-s>0), то потенциал труба—грунт становится более положительным. Блуждающий ток при этом стекает с трубопровода. Однако периодически наблюдается обратное соотношение потенциалов Ur-s<0). В таком случае блуждающий ток натекает на трубопровод и потенциал становится более отрицательным. Запись на участке рисунка б относится к условиям непосредственного дренажа блуждающих токов в рельсы. При С/д з>0 ток стекает с трубопровода через линию отвода блуждающих токов обратно к рельсам, так что анодной поляризации трубопровода не происходит. Однако при /л в<0 ток течет через упомянутое соединение в трубопровод и вызывает его анодную поляризацию. Следовательно, прямой дренаж блуждающего тока в рельсы в данном случае невозможен. Результаты поляризованного дренажа блуждающих токов в рельсы показан на участке рисунка в. В этом случае трубопровод всегда имеет катодную поляризацию. Однако полная катодная защита еще не достигается.  [c.331]

Многие сети газоснабжения и водопроводные сети в городах еще состоят из старых труб, имеющих в ряде случаев очень плохое изоляционное покрытие. У силовых кабелей и кабелей телефонных сетей оболочка обычно тоже почти не обеспечивает достаточной электрической изоляции, если только она не выполнена пластмассовой. Мероприятия по защите от блуждающих токов на каком-либо из таких сооружений сами по себе обычно невозможны, потому что имеется много соединений с потребителями и случайных контактов на пересечениях в грунте. В общем случае все трубопроводы и кабели, расположенные в грунте поблизости от тяговых трамвайных подстанций, подвергаются-опасности коррозии. Поэтому часто приходится рекомендовать совместные мероприятия по защите от блуждающих токов [16]. Более крупные трамвайные сети питаются от большого числа тяговых подстанций. Простые или усиленные дренажи блуждающих токов следует сооружать по возможности в непосредственной близости от подстанций. На подстанциях большой мощности, например на центральных подстанциях постоянного тока, для защиты распределительных сетей обычно  [c.334]

Значительные блуждающие токи могут быть впрочем вызваны кранами, работающими на постоянном токе и предназначенными для погрузки и разгрузки судов подкрановые пути используются для отвода обратного тока. Подкрановые пути проходят параллельно бассейну порта, железобетонным стенам причалов и металлическим шпунтовым стенкам. Эти сооружения воспринимают значительную часть блуждающих токов и благодаря своему малому продольному сопротивлению пропускают их дальше. Однако заметное влияние блуждающих токов на суда может ожидаться лишь в исключительных случаях. Напротив, трубопроводы и кабели, проложенные в земле на берегу, подвергаются сильной опасности коррозии. Здесь имеется возможность применить для защиты этих сооружений дренажи или усиленные дренажи блуждающих токов.  [c.336]

Дренаж блуждающих токов 41,42, 219, 224, 228, 301, 312, 330, 331  [c.493]

Дренаж блуждающих токов применяется к подземным сооружениям — трубопроводам и кабелям — в городах, где имеется трамвай или электрическая железная дорога. Для дренажа используется часть э. д. с. генератора, питающего сеть железной дороги (см. стр. 632).  [c.976]

Специальные аноды и катодная защита. Если дренаж между точками В я С (рис. 11.1) установить невозможно, то в направлении рельса закапывают специальный анод из чугуна, который соединяют с точкой В медным проводником. Тогда блуждающие токи вызывают коррозию только этого специального анода, замена которого обходится достаточно дешево. Если в цепь между анодом и трубой включен источник постоянного тока и ток течет в направлении противоположном блуждающим токам, то это будет равносильно катодной защите трубы. Такая защита применяется, когда дополнительного анода недостаточно для полного устранения коррозии блуждающими токами.  [c.214]

В принципе употребляемую в настоящее время усиленную дренажную защиту можно свести к описанной X. Геппертом катодной защите с наложением тока от внешнего источника. Гепперт в своей заявке на патент уже указал, что благодаря этому компенсируются блуждающие токи, стекающие с трубопровода, к упомянул также о возможности непосредственного соединения источника защитного тока с рельсами. Без дополнительного внешнего тока прямое соединение между трубопроводом и рельсом дает достаточный эффект только если рельсы всегда отрицательны, т. е. поблизости от выпрямительных устройств. Около 1930 г. в Милане и Турине уже имелось 25 прямых дренажей блуждающих токов для кабелей связи. Если же рельсы иногда оказывались также  [c.41]

При дренаже блуждающих токов через рельсы могут возникнуть пиковые токи до нескольких сотен ампер, но требуемое напряжение остается небольшим. Обычно оно бывает меньше 5 В и практически не превышает 10 В. Следовательно, мощность таких защитных установок получается меньшей, чем при размещении аподных заземлителей в районе с блуждающими токами.  [c.219]

Ввиду большого числа посторонних контактов применить пробное наложение защитного тока не удалось. Для обеспечення орнептировоч-ного требуемого защитного тока 0,3 мА-м были сооружены три станции катодной защиты, из которых одна была предназначена для отсоса (дренажа) блуждающих токов к трамвайным рельсам. При помощи защитных станций были выявлены и локализованы многочпслениые посторонние контакты (см. раздел 3.6.1.1), После установки изолирующих элементов оказалось, что нужна еще одна защитная станция. Необходимый защитный ток при этом составил 18 А при 7s = 0,55 мА-м [20].  [c.258]


Протяженность зоны катодной защиты кабелей ввиду их гораздо больщего продольного электросопротивления и гораздо меньщего со-нротивления покрытия получается меньшей, чем в случае трубопроводов. В системах дренажа блуждающих токов на городской территории нередко отводятся блуждающие токи, составляющие 10—15 % всего тягового тока трамвайной линии. С оболочек кабелей через дренажные устройства блуждающих токов к их источникам иногда стекают токи силой 100—300 А. Снижение потенциала у дренажей блуждающих токов в случае кабелей со свинцовой оболочкой без покрытия ввиду их малого переходного сопротивления на землю обычно сказывается лишь на расстоянии нескольких сотен метров [7, 8].  [c.301]

Предпосылками для осуществления дренажа или усиленного дренажа блуждающих токов в рельсы железных дорог с тягой на постоянном токе являются те же условия, что и при защите от коррозии (см. раздел 11.1). Трубопроводы и оболочки кабелей должны иметь металлическую проводимость по всей длине. Отдельные изолирующие муфты, например с зачеканкой свинцом или с обрезиненными болтами, должны быть закорочены проводящими перемычками. Защищаемые сооружения не должны иметь металлически проводящего соединения с ходовыми рельсами, что нередко наблюдается в особенности на мостах и делает мероприятия по защите от блуждающих токов невозможными. Металлические соединения и без мероприятий по защите от блуждающих токов являются особым источником опасности вследствие возможности натекания блуждающих токов и поэтому их следует в принципе всегда избегать. Соединения трубопроводов и кабелей при осуществлении совместных защитных мероприятий помехой не являются. Такие соединения могут быть даже желательными или необходимыми.  [c.328]

При усиленном дренаже блуждающих токов ток отводится из трубопровода к рельсам при помощи преобразователя, питаемого от сети. Преобразователь включается в линию отвода блуждающих токов обратно к рельсам, причем минусовой полюс подсоединяется к защищаемой установке (сооружению), а плюсовой полюс — к ходовым рельсам или к минусовой сборной шине на тяговой подстанции. Различные исполнения защитных преобразователей и возможности их применения описаны в разделе 9. На участке рисунка г показана запись параметров, получающихся при применении нерегулируемого преобразователя с напряжением на выходе 2 В, подсоединнтельные кабели которого, имеющие сопротивление около 0,4 Ом, действуют как ограничитель тока. При этом достигается катодная защита, эффективность которой однако в случае трубопроводов с плохим изолирующим покрытием быстро уменьшается по мере удаления от защитной установки. Сильные колебания защитного тока могут быть уменьшены путем увеличения сопротивления, ограничивающего ток, с помощью добавочного сопротивления R. Однако тогда и потенциал труба — грунт в среднем становится менее отрицательным. Если требуется обеспечить только защиту от блуждающих токов,, то сопротивление R настраивается так, что с увеличением защитного тока потенциал труба—грунт становится лишь немного более отрицательным. Однако эффект сглаживания тока при работе преобразователей, питаемых от сети, может быть достигнут и без потери мощности на омическом сопротивлении, если предусмот-  [c.331]

Рис. 16.9. Синхронная запись тока, напряжения и потенциала при воздействии блуждающих токов от электрифицированных железных дорог, работающих на постоянном токе а — без проведения защитных мероприятий б — прямой дренаж блуждающего тока через ходовые рельсы в — поляризоианный дренаж блуждающих токов через рельсы г — усиленный дренаж блуждающих токов через нерегулируемый преобразователь (выпрямитель) защитной установки д — усиленный дренаж блуждающих токов при помощи гальваностатически регулируемого преобразователя защитной установки (по схеме с поддержанием постоянного значения тока) е — усиленный дренаж блуждающих токов при помощи потенциостатпчески регулируемого преобразователя защитной установки (ио схеме с поддержанием постоянного значения потенциала) ж — усиленный дренаж блуждающих токов при помощи потенциостатического регулируемого преобразователя защитной установки с поддержанием основного значения тока Рис. 16.9. Синхронная запись тока, напряжения и потенциала при воздействии блуждающих токов от электрифицированных <a href="/info/35698">железных дорог</a>, работающих на <a href="/info/461800">постоянном токе</a> а — без проведения <a href="/info/648976">защитных мероприятий</a> б — <a href="/info/183420">прямой дренаж</a> блуждающего тока через ходовые рельсы в — поляризоианный дренаж блуждающих токов через рельсы г — <a href="/info/183421">усиленный дренаж</a> блуждающих токов через нерегулируемый преобразователь (выпрямитель) <a href="/info/39641">защитной установки</a> д — <a href="/info/183421">усиленный дренаж</a> блуждающих токов при помощи гальваностатически регулируемого преобразователя <a href="/info/39641">защитной установки</a> (по схеме с поддержанием <a href="/info/62267">постоянного значения</a> тока) е — <a href="/info/183421">усиленный дренаж</a> блуждающих токов при помощи потенциостатпчески регулируемого преобразователя <a href="/info/39641">защитной установки</a> (ио схеме с поддержанием <a href="/info/62267">постоянного значения</a> потенциала) ж — <a href="/info/183421">усиленный дренаж</a> блуждающих токов при помощи потенциостатического регулируемого преобразователя <a href="/info/39641">защитной установки</a> с поддержанием основного значения тока
При пересечениях трубопровода с консольными участками пути, ответвляющимися от центральной части железнодорожной сети, например за пределами городской территории, усиленный дренаж блуждающих токов следует делать по возможности на рельсы там, где отрицательные потенциалы наблюдаются наиболее продолжительное время. Токи, воспринимаемые рельсами с положительными потенциалами, текут и в участки за пределами пересечений с рельсовыми путями. Здесь рекомендуется применять потенциостатически регулируемые преобразователи не только в соединении с рельсами, но и в соединении с анодными заземлителями станций катодной защиты.  [c.334]

Влияние блуждающих токов можно предупредить или совсем устранить применением установок электродренажной зацщты, принцип работы которой заключается в устранении анодных зон на подземных трубопроводах при сохранении катодных зон. Это достигается отводом (дренажом) блуждающих токов с участков анодных зон в рельсовую цепь электротяги или на сборную шину отсасывающих кабелей тяговой подстанции. В зависимости от условий применения дренажные установки можно разделить на 4 группы - прямые, поляризованные, усиленные электродренажные установки и поляризованные протекторные установки (рис. 25).  [c.110]

Борьба с коррозией блуждающими токами прежде всего заключается в их уменьшении. В случае электрических железных дорог, у которых рельс служит обратным проводом, это достигается поддержанием в хорошем состоянии электрипеских контактов между рельсами и увеличением сопротивления между рельсами и почвой (пропитка шпал, подсыпка под рельсы гравия для легкого стекания воды и т. п.). Уменьшить разрушение, блуждающими токами можно также защитой электроизолирующими покрытиями, дренажем блуждающего тока и т. п.  [c.65]

Помимо дренажа блуждающих токов, применяющегося повсюду, где имеется трамвай или электрические железные дороги, работающие на постоянном токе, на длинных междугородних подземных трубопроводах и телефонных кабелях употребляется усиленный дренаж. Он также применяется частично на водо- и газопроводах, а также коммуникационных и силовых кабелях в городских сетях.  [c.976]

Дренажные установки, которые являются наиболее эффективным методом, отводят блуждающие токи из анодной зоны подземного сооружения в рельсовую сеть или на отрицательную шину тяговой подстанции (рис. 281). Прямой дренаж имеет двухсторон-  [c.396]

Дренаж. Как видно из рис. 11.1, коррозию блуждающими токами можно полностью устранить, если соединить трубу В с рельсами С металлическим проводником с низким сопротивлением. Такой способ называется дренажем. Если разрушение вы-лывается системой катодной защиты, в линию дренажа можно включить резистор, чтобы избежать большого изменения потенциала незащищенной части системы при включении и выключении тока катодной защиты. Такое сопротивление в значительной мере предохраняет незащищенную часть системы от разрушения. В то же время оно позволяет избежать большого увеличения катодного тока, необходимого для защиты дополнительных конструкций, присоединяемых дренажем. Если по какой-то причине блуждающие токи периодически меняют направление, в дренажную линию включают выпрямляющее устройство (диод), тогда ток любого направления безопасен для конструкции.  [c.214]



Смотреть страницы где упоминается термин Дренаж блуждающих токов : [c.302]    [c.315]    [c.327]    [c.329]    [c.330]    [c.331]    [c.333]    [c.335]    [c.459]    [c.25]   
Катодная защита от коррозии (1984) -- [ c.41 , c.42 , c.219 , c.224 , c.228 , c.301 , c.312 , c.330 , c.331 ]



ПОИСК



Дренаж

Дренаж и усиленный дренаж блуждающих токов

Ток блуждающий



© 2025 Mash-xxl.info Реклама на сайте