Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристаллизация с углеродистых и низколегированных

Горячие трещины возникают в процессе первичной кристаллизации сварочной ванны по границам зерен. Трещины, выходящие на поверхность сварного швз, бывают заполнены шлаком. Следовательно, горячие трещины образуются при температуре выше 1 200° С, когда шлак еще не затвердел. При кристаллизации и охлаждении сварочной ванны вследствие усадки металла и неравномерного прогрева в металле шва возникают растягивающие напряжения. В зависимости от температуры усадка аустенитной стали и коэффициент ее линейного расширения больше этих характеристик углеродистой или низколегированной стали в 1,5—2 раза. Поэтому напряжения, возникающие при кристаллизации и охлаждении аустенитного сварного шва, также получаются выше.  [c.183]


Известно, что при сварке обычных углеродистых и низколегированных сталей вторичная кристаллизация, т. е. появление новых структурных составляющих в результате распада аустенита в процессе охлаждения шва, затемняет первичную структуру металла щва. Нужны специальные методы травления, чтобы выявить его первичную структуру.  [c.98]

Изменения скорости охлаждения швов при сварке углеродистых и низколегированных сталей, как показала С. А. Островская, оказывают существенное влияние на характер вторичной кристаллизации (выделения перлитной составляющей) и во многом определяют механические свойства сварных швов. При сварке аустенитных сталей и сплавов изменение условий теплоотвода, скорости охлаждения, мало влияет на вторичную структуру шва оно сказывается главным образом на полноте выделения избыточной фазы по границам зерен аустенита. Чем медленнее остывает сварной шов, тем большее количество избыточной фазы выпадает по границам зерен.  [c.122]

Исследования показали, что наиболее подходящими для литья под давлением являются коррозионно-стойкие стали [6]. Они значительно дольше затвердевают, чем обычные низкоуглеродистые и низколегированные стали, имеют более низкую теплопроводность, благодаря чему повышаются четкость контуров отливки и качество ее поверхности. Углеродистые стали сложнее отливать под давлением из-за высокой температуры плавления, узкого интервала кристаллизации и большой усадки.  [c.31]

Горячие трещины образуются в процессе первичной кристаллизации сварочной ванны. Они проходят по границам зерен. Трещины, выходящие на поверхность шва, бывают заполнены шлаком. Это свидетельствует о том, что они образуются при температуре выше 1200° С, когда шлак еще жидкий. При кристаллизации и охлаждении сварочной ванны вследствие усадки металла и неравномерного прогрева в металле сварного шва возникают растягивающие напряжения. Усадка сталей аустенитного класса и коэффициент линейного расширения их больше, чем у углеродистой или низколегированной стали, в 1,5—2 раза в зависимости от температуры. Поэтому напряжения, возникающие при кристаллизации и охлаждении сварного шва таких сталей, тоже высокие.  [c.217]

При кристаллизации и охлаждении сварочной ванны из-за усадки металла и неравномерного прогрева в металле сварного шва возникают растягивающие напряжения. Усадка сталей аустенитного класса и коэффициент линейного расширения их больше, чем у углеродистой или низколегированной стали (в 1,5—2 раза в зависимости от температуры). Поэтому напряжения, возникающие при кристаллизации и охлаждении сварного шва таких сталей, тоже высокие.  [c.124]


После выключения 1с металл зоны сварки охлаждается и кристаллизуется в результате отвода теплоты Q, и Q , и в зоне, ограниченной Т , образуется литое ядро. Процесс кристаллизации зависит от режима сварки (скорости охлаждения). При высоких скоростях охлаждения, характерных для сварки на жестких режимах, металл ядра и зоны термического влияния может существенно изменять свои свойства (пластичность, твердость, прочность), образуя, например, закалочные структуры при сварке углеродистых и низколегированных сталей, что приводит к хрупкости и низкой прочности сварного соединения. При охлаждении и кристаллизации металла происходит его усадка, возможно образование пористости, раковин и трещин, снижающих качество соединения. Для предупреждения этих дефектов в процессе кристаллизации металла быстро повышают усилие сжатия электродов (прикладывают ковочное усилие F ).  [c.20]

Для соединения углеродистых и низколегированных сталей целесообразно применять новые способы сварки, обеспечивающие высокую прочность, сохранение исходных свойств соединяемых материалов и исключающие дефекты, свойственные сварке плавлением. К таким способам сварки прежде всего относится диффузионная сварка в вакууме, осуществляемая при температурах значительно ниже температуры плавления. В этом случае отсутствует процесс первичной кристаллизации металла и возможность возникновения горячих трещин уменьшается.  [c.126]

Свойства металла шва, кш и любого металла, определяются его химическим составом и структурой. Механические свойства сварного шва зависят в большой степени от первичной кристаллической структуры, т. е. структуры, образующейся при переходе металла из жидкого состояния в твердое. В сварных швах углеродистых и низколегированных перлитных сталей первичную структуру можно наблюдать только после специального травления. Обычное травление выявляет вторичную структуру, т. е. структуру, образующуюся после окончания превращения аустенита. При медленном охлаждении образовавшиеся в жидкой ванне кристаллы аустенита выделяют феррит, а оставшийся после образования феррита аустенит с повышенным содержанием углерода переходит в перлит. Из осей первого порядка дендритов, содержащих меньше углерода и примесей, образуются зерна феррита. Дендрит дробится на несколько зерен. Зерна перлита получаются из периферийных слоев дендритов и междендритных прослоек. Феррито-перлитнач структура сварного шва называется вторичной, так как она образовалась в процессе вторичной кристаллизации из твердого раствора углерода в ужелезе — аустенита.  [c.171]

Существует большая группа сварных изделий — сварной режущий инструмент. В работе [227] изучено влияние ТЦО на структуру и механические свойства сварных швов заготовок инструмента. Для экономии дорогостоящих быстрорежущих сталей режущий инструмент обычно изготавливают, предварительно сваривая заготовки из быстрорежущих сталей, например Р6М5, и конструкционных (углеродистых и низколегированных). Быстрорежущая часть заготовки предназначена для рабочей (режущей) зоны инструмента, конструкционная, например из стали 45,— для хвостовиков сверл, фрез, метчиков и т. д. Сварку сталей производят двумя наиболее распространенными способами трением и электроконтактным оплавлением. Сварной шов в месте соединения быстрорежущих и конструкционных сталей характеризуется большой твердостью (до 63—65 ННСэ), хрупкостью и практически не обрабатывается резанием. Большая твердость шва обусловлена закалкой поверхностных слоев при охлаждении на воздухе от температур оплавления и появлением в его структуре ледебуритных игл — крупных карбидных включений. Значительная хрупкость зоны шва связана с потерей пластичности сталью, перегретой при сварке до оплавления, и с ускоренной кристаллизацией и последующей закалкой. Такая структура неудовлетворительна не только для механической обработки при изготовлении инструмента, но и для окончательной ТО — закалки и соответствующего отпуска. Дело в том, что если производить закалку сварного соединения, в структуре которого имеется ледебурит, то получаемая структура мартенсита с иглами крупных карбидов тоже имеет неудовлетворительные свойства. На практике часто сварные швы не подвергают закалке.  [c.225]


В сварных швах углеродистых и низколегированных перлитных сталей первичную структуру можно наблюдать только после специального травления. Обычное травление выявляет вторичную структуру. При медленном охлаждении образовавшиеся из жидкости при высокой температуре кристаллы аустенита в интервале температур от Аг до Аг превращаются в феррит, а оставшийся после превращения аустенит с повышенным содержанием углерода переходит в перлит. Из осей дендритов первого порядка, содержащих меньше углерода и примесей, образуются зерна феррита. Дендрит дробится на несколько зерен. Перлитные зерна получаются из периферийных слоев дендритов и междендритных прослоек. Феррито-нерлитная структура сварного шва называется вторичной, так как она образуется в процессе вторичной кристаллизации из твердого раствора — аустенита.  [c.209]

BoflHbifi раствор азоТ ной кислоты 10%-ный 25%-ный Погружение на 1 — 2 мин при комнатной температуре Выявление границ шва и зоны термического влияния, расположенил слоев и валиков в швах, характера кристаллизации, дефектов на углеродистых и низколегированных сталях То же, для среднелегированных сталей  [c.712]

Сварка сталей. Обычно сварку малоуглеродистой низколегированной стали осуществляют под флюсом или в СОг, но иногда оказывается целесообразным использовать сварку плавящимся электродом в среде инертных газов, например при малой толщине материала. Углеродистые стали, особенно кипящие, весьма склонны к пористости, основной причиной которой является реакция взаимодействия углерода с кислородом [С]-Ь[0]5 С0 . Окислению сварочной ванны способствуют примеси в газе в виде свободного Ог и паров НгО. Развитию пористости способствует также водород и азот, растворенные в металле шва (см. гл. XIV). Для подавления реакции окисления углерода в период кристаллизации металла шва в сварочной ванне должно содержаться достаточное количество раскислителей (51, Мп, Т1). В целях предупреждения пористости при сварке углеродистой стали целесообразно использовать присадочный материал с повышенным содержанием элементов раскислителей — Св-08ГС, Св-08Г2С и т. д. (Устранение пор при сварке углеродистых сталей может быть также достигнуто путем добавки к аргону 5% Ог, что способствует интенсивному кипению ванны жидкого металла с образованием СО до начала кристаллизации металла шва).  [c.368]

Раствор 25 см HNO3 в 75 см воды. Применяется для выявления характера кристаллизации наплавленного металла и зоны термического воздействия при сварке углеродистых, средне- и низколегированных сталей. Длительность травления  [c.58]

По данным [33, 32, 63, 61], центрами выделений сульфидов на ранней стадии кристаллизации металла швов при сварке углеродистых и низколегированных конструкционных сталей являются карбиды титана, а также оксиды алюминия (в виде алюмосиликатов и частиц глинозема). Причем алюминий и титан, будучи в то же время сильными раскисли-телями, оказывают полезное действие на форму сульфидных включений только при определенном их содержании. Так, по мнению этих авторов, введение небольших количеств титана сопровождается значительным увеличением количества сложных сульфидных пленок и цепочек, расположенных по границам первичных кристаллитов. Количество оксисульфидных включений при этом уменьшается. Дальнейшее повышение концентрации титана в металле шва сопровождается уменьшением количества пленообразных сульфидных включений и появлением сложных неметаллических включений угловатой формы, содержащих карбиды титана и сульфиды. При концентрации титана 0,5—2,0% практически вся сера входит в состав этих сложных включений, а пленки и цепочки сульфидов полностью отсутствуют.  [c.290]


Смотреть страницы где упоминается термин Кристаллизация с углеродистых и низколегированных : [c.243]    [c.252]    [c.238]    [c.1197]    [c.125]   
Физические основы ультразвуковой технологии (1970) -- [ c.464 ]



ПОИСК



Кристаллизация

Р углеродистое

Структура и свойства сварных соединений углеродистых и легированных сталей Кристаллизация наплавленного металла сварных соединений углеродистых и низколегированных перлитных сталей



© 2025 Mash-xxl.info Реклама на сайте