Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Циклотронная масса в полупроводниках

Циклотронная масса I 236, 243 в металлах I 278 в полупроводниках II 193 См. также Эффективная масса Циклотронная частота I 31 в полупроводниках II 193 численные формулы I 31, 372 Циклотронный резонанс в металлах I 278—280 в полупроводниках I 278 (с), II 193, 194  [c.414]

Циклотронный резонанс в полупроводниках. В нескольких полупроводниках форму энергетической поверхности зоны проводимости и валентной зоны вблизи их краев ) можно определить экспериментально по измерениям циклотронного резонанса. Определение формы энергетической поверхности эквивалентно определению компонент тензора эффективных масс, поскольку  [c.400]


Важнейшим параметром у полупроводников является эффективная масса, т. е. вторая производная энергии по Л-вектору. Поверхностей Ферми у полупроводников нет, так как энергия Ферми у них лежит в запрещенной зоне, между валентной зоной и зоной проводимости ). Для определения эффективных масс, как и в эффекте де Гааза —ван Аль на, используется орбита носителей тока в магнитном поле. При постоянной эффективной массе получаются круговые орбиты, частота обращения тогда есть циклотронная резонансная частота уравнения (8.7). Подробнее об этом можно найти в [95] и гл. IX. Наряду с этим, при изучении всех оптических переходов между занятыми и свободными состояниями зонной модели, интересна структура зоны проводи-  [c.112]

У полупроводников анизотропия зонной структуры означает, что эффективная масса зависит от направления и возможные эквивалентные экстремумы лежат в разных точках зоны Бриллюэна (при всех ife-векторах звезды, ср. с рис. 40). Следствия этой анизотропии подробно рассмотрены в уже цитированной книге [95]. В металлах анизотропия означает отступление формы поверхности Ферми от сферической, как, например, рассмотренная нами на рис. 33. Один из наиболее важных результатов влияния этой анизотропии наблюдается в гальваномагнитных эффектах у металлов при сильных магнитных полях. Очевидно, что при слабых магнитных полях электрон между двумя столкновениями пробегает только небольшие участки поверхности Ферми, тогда как при сильных магнитных полях описывает замкнутые траектории на поверхности Ферми. Время пробега по порядку величины равно обратной частоте циклотронного резонанса. Граница между сильными и слабыми магнитными полями лежит, следовательно, при о) т=1 или, так как (о = еВ/ст и [х ет/т, при (1/с) fiS=l.  [c.244]

Измерения циклотронного резонанса в полупроводниках важно для определения частоты и, следовательно, эффективной массы носителей заряда. В металлах наблюдению такого резонанса препятствует ряд трудностей электромагнитные волны частоты  [c.299]

При выводе выражения для постоянной Холла мы задавались некоторыми значениями эффективной массы и времени релаксации, хотя мы не конкретизировали, относится ли все рассмотрение к металлам или полупроводникам. В простых металлах (при небольших полях) измерения дают значения постоянной Холла, близкие к тем, которые мы получили бы, принимая для валентных электронов приближение почти свободных электронов. В полупроводниках п- или р-типа эта величина дает разумное число электронов и дырок соответственно. Одновременные измерения постоянной Холла и электропроводности позволяют найти как число носителей, так и отношение времени релаксации к эффективной массе. Последняя величина непосредственно определяет подвижность, т. е. отношение средней скорости дрейфа к электрическому полю. Оказывается, что конечная формула для постоянной Холла остается справедливой и тогда, когда мы рассматриваем более сложные и анизотропные зонные структуры. Однако при этом интерпретация величины N несколько усложняется. Если мы рассматриваем, например, кристалл, содержащий носители в двух зонах, то N будет некоторой взвешенной суммой числа носителей в каждой зоне, причем веса зависят от эффективной массы и времени рассеяния носителей в каждой из зон. Оказывается также, что поперечное электрическое поле теперь уже не зависит линейно от магнитного поля. В сильных и слабых полях поведение носителей существенно различно. Сильное поле или слабое зависит от того, будет ли произведение циклотронной частоты и времени рассеяния для разных носителей, т. е.  [c.293]



Смотреть страницы где упоминается термин Циклотронная масса в полупроводниках : [c.451]    [c.35]    [c.88]    [c.311]    [c.221]   
Физика твердого тела Т.2 (0) -- [ c.193 ]



ПОИСК



Полупроводники

Циклотрон



© 2025 Mash-xxl.info Реклама на сайте