Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магнитная анизотропия и спиновые волны

Дисперсионные кривые для всех типов волн, распространяющихся вдоль оси анизотропии ферромагнетика в магнитостатическом приближении изображены на рис. 14.4. Видно, что в данном случае имеется четыре дисперсионные ветви, что и следовало ожидать в соответствии с общими представлениями о связанных волнах. Ветвь I отвечает невзаимодействующей со спиновой системой продольной звуковой волне, а ветвь 3 — поперечной магнитоупругой волне с правой круговой поляризацией, слабо взаимодействующей со спиновой волной. Кривые 2 и 4 при к>кд отвечают взаимодействующим поперечной магнитоупругой волне с левой круговой поляризацией и спиновой волне. При как ситуация меняется на обратную — ветвь 2 соответствует спиновой волне, а ветвь 4 — звуковой. Волны 2 и часто называют связанными магнитоупругими волнами. Подчеркнем еще раз, что каждая из распространяющихся волн характеризуется при этом как упругими смещениями, так и магнитными моментами, причем, как следует из (3.2), доля магнитной части в упругой волне и доля механической части в спиновой особенно значительны (одного порядка) при со , (й)-- сО( (й), т. е. в области магнитоакустического резонанса. Таким образом, возбуждение звука с помощью магнитных колебаний и, наоборот, спиновых волн посредством механических колебаний наиболее эффективно при со (й) со, (й). Частот магнитоакустического резонанса, очевидно, две. Одна из них, низшая, практически совпадает с со(0) и для типичных параметров, используемых в эксперименте, составляет - 10 ГГц. Вторая частота лежит в области частот, близких к предельным частотам колебаний кристаллической решетки. Таким образом, явление магнитоакустического резонанса может быть использовано для генерации гиперзвука.  [c.377]


Следует заметить, что форма линий ферромагнитного резонанса оказалась у нас дельтаобразной. Это связано с тем. что в рассматриваемом приближении функции Грина имеют только полюсы на вещественной оси, и затухание возбуждений отсутствует. Учет затухания, необходимый для рассмотрения формы и ширины резонансной линии, требует перехода к более высоким приближениям (процессам рассеяния спиновых волн друг на друге). Следует, однако, иметь в виду, что фактически затухание спиновых волн (и, следовательно. уширение линии поглощения) связано еще с целым рядом других факторов — магнитной анизотропией кристалла, взаимодействием спиновых волн с фононами, электронами проводимости и т. д. Вопрос о доминирующем механизме затухания пока еще не вполне ясен.  [c.251]

Дисперсия спиновых волн в АФЛП обладает определенной анизотропией. Например, в СоСОа большую энергию при заданном [к] имеют спиновые волны, которые распространяются в направлении, перпендикулярном магнитному полю и легкой оси. Данные, приведенные на рис. 28.13 для СоСОз, получены методом одномагнонно-го мандельштам-бриллюэновского рассеяния света с использованием в качестве анализатора интерферометра Фабри — Перо.  [c.650]

Многие Ф.-гранаты обладают рядом уникальных свойств капр., в ЖИГ ширина линии магнитного резонанса составляет величину порядка 10 Тл, так что добротность резонатора может достигать неск. тысяч. Эпитаксиальные плёнки Ф.-гранатов являются одним из лучших материалов для устройств с цилиндрическими магнитными доменами, нек-рые из них прозрачны и имеют большой угол фарадеевского вращения (см. Магнитооптика). При низких темп-рах Ф.-гранаты обладают большой магнитной анизотропией, обусловленной редкоземельными ионами, и значит, магнитострикцией в них удаётся возбудить бегущие спиновые волны и наблюдать рассеяние света на спиновых волнах.  [c.293]

Спин-волновой резонанс. Однородные переменные магнитные поля в тонких ферромагнитных пленках могут возбуждать спиновые волны больщой длины волны ), если действующее на электронные спины в поверхностном слое пленки эффективное поле анизотропии иное, чем для спинов во внутренней области пленки. Действительно, спины в поверхностном слое могут быть направлены перпендикулярно к поверхности, как показано на рис. 17.19. Если переменное поле однородно, то оно может возбуждать волны так, что на толщине пленки будет укладываться нечетное число полуволн. При четном числе полуволн отсутствует результирующая энергия взаимодействия с полем.  [c.619]


Постоянная частота (6.10.17) называется частотой поверхностных магнитных спиновых волн или частотой Деймона — Эшба-ха. Особенно удивителен следующий факт. Предположим, что коэффициент магнитной анизотропии Ь мал по сравнению с (см. определения (6.6.58)), так что 6 Хо = о/ о> немея к размерным частотам, одновременно положив  [c.397]

Очень сходный с этим результат легко получить для спиновой корреляционной функции <18 — 8<+н ), где К — расстояние между удаленными узлами в упорядоченной ферромагнитной цепочке [18]. Эта функция сама по себе не может служить мерой дальнего магнитного порядка сверх того в отличие от правой части (1.49) она не чувствительна к поворотам всей цепочки. Вместе с тем ее легко вычислить, воспользовавшись представлением спиновых волн (1.46) как для ферромагнитных, так и для антифер-ромагнитных систем она оказывается пропорциональной интегралу типа (2.11). При 3 рассматриваемое выражение возрастает с ростом Н. Иначе говоря, предположение о магнитном упорядочении не согласуется с величиной флуктуаций относительной ориентации спинов в удаленных друг от друга узлах. Таким образом, в одно-или двумерной системе в отсутствие факторов, изменяющих спектр магнонов (1.47),— конечного магнитного поля или магнитной анизотропии — спонтанный ферромагнитный или антиферромагнитный порядок возникнуть не может.  [c.65]


Смотреть страницы где упоминается термин Магнитная анизотропия и спиновые волны : [c.633]    [c.638]    [c.601]    [c.604]    [c.310]    [c.413]    [c.16]    [c.380]   
Физика твердого тела Т.2 (0) -- [ c.322 , c.338 ]



ПОИСК



Анизотропии волны

Анизотропия

Волна магнитная

Магнитная анизотропия

Спиновые волны



© 2025 Mash-xxl.info Реклама на сайте