Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коттон

Коттон — Мутона 294 Метод графического сложения амплитуд 128—130, 137  [c.427]

Двойное лучепреломление в магнитном поле (явление Коттон — Мутона)  [c.536]

Искусственная анизотропия среды может быть создана и наложением внешнего магнитного поля. При этом также возникает двойное лучепреломление света (эффект Коттона — Мутона, 1907).  [c.69]

Эффект Коттона — Мутона во многом аналогичен эффекту Керра. По своим магнитным свойствам молекулы делятся на парамагнитные молекулы (р>1), обладающие постоянным магнитным моментом, и диамагнитные молекулы (н<1), которые не имеют постоянного магнитного момента, но могут приобретать его в магнитном поле. Анизотропия среды под действием магнитного поля возникает либо благодаря ориентации парамагнитных молекул (по аналогии с полярными молекулами), либо благодаря анизотропии магнитной восприимчивости  [c.69]


Связь М. и оптич. свойств веществ приводит к огромному числу физ. эффектов (см. Зеемана эффект, Фарадея эффект, Коттона — Мутона эффект, Хайле эффект и др.), в т. ч. к влиянию света на возникновение и изменение магн. порядка.  [c.633]

По мере Р. р. в ионосфере увеличивается сдвиг фаз между волнами и изменяется поляризация суммарной волны. Напр., при Р. р. вдоль Но это приводит к Повороту плоскости поляризации (Фарадея эффект), а при Р, р. перпендикулярно — к периодич. чередованию линейной п круговой поляризаций (см. Коттона — Мутона эффект). Т. к. показатели преломления волн различны, отражение их происходит на разной высоте (рис. 11). Направление волнового вектора к при Р. р. в ионосфере может отличаться от о р.  [c.259]

ВЛИЯНИЮ контакта с титаном на скорость коррозии ряда металлов и сплавов при равной площади поверхности контактирующих образцов. Количественно оценивая данные, можно отметить, что электрохимическое поведение титана при контакте в морской воде с другими металлами аналогично поведению нержавеющей стали типа 18-8. Это позволяет сделать вывод о возможности замены нержавеющей стали титаном в условиях контактирования с другими металлами без опасности существенного усиления кон тактной коррозии. При оценке контактной коррозии с титаном как и с другими электроположительными металлами, следует учи тывать соотношение площадей контактирующих металлов и уда ленность от места контакта. Так, по данным Коттона, в воде в кон такте с титаном при соотношении площадей 10 1 (титан—катод другой металл — анод) сильно корродировали углеродистая сталь алюминий, пушечная бронза умеренной коррозии подвергались алюминиевая латунь, сплавы медь-никель, с незначительной ско ростью корродировала нержавеющая сталь типа 18-8. При обрат ном соотношении площадей (Т1 Me = 1 10) единственным ме таллом, который подвергался коррозии, была углеродистая сталь Эффект контактной коррозии при этом соотношении площадей был в 12 раз меньше, чем при соотношении площадей 10 1.  [c.37]

Впервые эффективность анодной защиты титана в серной кислоте была показана Коттоном на модельной установке 84], в которой рециркулировала 40%-ная серная кислота при 60°С. Через шесть недель была определена скорость коррозии,  [c.63]

Двойное лучепреломление в магнитном поле (явление Коттон— Мутона). Как показали опытные данные, под действием магнитного поля, перпергдикулярного направлению распространения света, на веш,естве наблюдается явление, аналогич юе эффекту Керра. Установлено, что в этом случае оптическая анизотропия среды выразится формулой  [c.294]


Теория эффекта Коттона — Мутона аналогична теории эффекта Керра. Вещество в магнитном поле становится анизотропным вследствие ориентации анизотропно поляризующихся молекул (ориентационная теория Лан-жевена — Борна), а также вследствие непосредственного влияния поля на оптическую поляризуемость молекул.  [c.70]

Эффект Зеемана лежит в основе объяснения двух главных магнитооптических явлений — магнитного вращения плоскости поляризации (эффект Фарадея) и магнитного двойного лучепреломления (эффект Коттона — Мутона). Изучение эффекта Зеемана на спектральных линиях атомов в видимой и ультрафиолетовой областях сыграло большую роль в развитии учения о строении атома, особенно в период, последовавший за созданием теории Бора. В настоящее время исследование эффекта Зеемана на спектральных линиях атомов представляет собой один из важных методов определения характеристик уровней энергии атомов и значительно облегчает интерпретацию сложных атомных спектров. Изучение зеема-новского расщепления спектральных линий позволяет также получать ценные сведения о магнитных полях, в источниках света, например при исследовании Солнца.  [c.102]

Оптические и магнитооптические свойства. Ферриты обладают сравнительно высокой прозрачностью в ряде участков ближнего и далекого инфракрасного спектров. Ферриты-гранаты характеризуются лучшей прозрачностью, чем ферриты-шпинели. Так, в иттриевом феррите-гранате имеются окна прозрачности при длинах волн K>L<0,1 мм и 1<л<10 мкм между двумя этими областями наблюдается сильное решеточное поглощение. В редкоземельных ферритах-гранатах в первой области прозрачности могут наблюдаться поглощение при ферромагнитном резонансе (если поле анизотропии велико) в случае обменного резонанса редкоземельной подрешетки в поле железных подрешеток, а также электронные переходы между уровнями основного мультиплета редкоземельных ионов. Во второй области наблюдаются электронные переходы в редкоземельных ионах и (при более коротких длинах волн) электронные переходы в ионах яселеза в октаэдрических и тетраэдрических позициях. Ферриты-гранаты в видимой и ближней инфракрасных областях спектра обнаруживают значительный эффект Фарадея при распространении света вдоль вектора намагниченности и примерно такой же по модулю эффект Коттона — Мутона (магнитное линейное двупреломле-ние) при распространении света перпендикулярно вектору намагниченности fl09—110].  [c.708]

Компактную (цельную) платину как материал для анодов на станциях катодной защиты предложил Коттон [14]. Такие аноды при подходящих условиях могут работать с плотностью анодного тока до Ю" А-м-2. Действующее напряжение практически не ограничивается, а скорость коррозии (в предположении об оптимальности условий) очень мала — порядка нескольких миллиграммов на 1 А в год. Впрочем, это обеспечивается преимущественно при сравнительно низких плотностях тока в морской воде при эффективном отводе образующейся подхлор-ной кислоты. Если приходится применять благородные материалы для получения высоких плотностей анодного тока в плохо проводящих электролитах, то анодное растворение платины увеличивается вследствие образования хлорокомплексов и в таком случае становится непосредственно зависящим от плотности тока [15—17]. Кроме того, в воде с низким содержанием хлоридов при преобладании образования кислорода на поверхностях анодов образуется предпочтительно легче растворимый окисел РЮг вместо PtO, вследствие чего расход платины тоже увеличивается. Тем не менее потери остаются малыми, так что цельная платина может практически считаться идеальным материалом для анодов. Однако такие аноды ввиду большой плотности платины (21, 45 г см-2) получаются очень тяжелыми, а ввиду весьма высоких цен на платину (28 марок ФРГ за 1 г по состоянию на сентябрь 1979 г.) они неэкономичны. Вместо них применяют аноды из других несущих металлов, рабочая поверхность которых покрыта платиной.  [c.204]

За исключением СССР и КНР только Австралии н ЮАР обладают значительными разведанными ресурсами угля, пригодными для экономичной эксплуатации. В Австралии для добычи открытым способом пригодны запасы бурого угля 10 млрд, т и битуминозного угля 3,8 млрд, т извлекаемые запасы битуминозного угля в ЮАР составляют 10 млрд, т, из которых только 5 % пригодны для добычи открытым способом (данные из обзора Мировой энергетической конференции, 1974 г.). В этих странах, в отличие от США, нет достаточного задела для быстрого подъема добычи угля, велики также трудности с оборудованием и рабочей силой. Генеральный консул Австралии в Нью-Йорке Генри Коттон в интервью английской газете Файнэшнл Таймс (от 5 марта 1980 г.) сообщал, что возможности экспорта угля из Австралии в 80-е годы  [c.248]


В потоке воды со скоростью 6 м сек скорость коррозии этих сплавов увеличивается в восемь раз. Н. Ж- Вилкинс [111,179] считает, что наиболее целесообразно использовать эти сплавы в сочетании с ингибированием воды (Н3РО4 и SiOj) при низких значениях pH. П. Коттон [111,203] указывает, что тепловыделяющий элемент, покрытый сплавом алюминия, легированного 9% кремния и 1% никеля, в течение 9 месяцев в воде при температуре 270° С коррозии не подвергался. В паре при температуре 217—250° С по прошествии 19 месяцев образцы из алюминиевого сплава, легированного 1% никеля 0,5% железа, 0,1—0,3% кремния и 0,1% меди, также показали высокую коррозионную стойкость. Такую же стойкость в воде при высокой температуре показали алюминиевые сплавы с концентрацией  [c.202]

ЭФФЕКТ [Коттона — Мутона состоит в возникновении оптической анизотропии у некоторых изотропных веществ (жидкостей, стекол, коллоидов) при помещении их в сильное внешнее магнитное поле (магнитокалорический — изменение температуры магнетика при адиабатическом изменении напряженности магниторезистивный — изменение электрического сопротивления твердых проводников под действием) магнитного поля магнитоупругий — влияние деформаций на намагниченность ферромагнетика Меесбауэра — испускание или поглощение гамма-квантов атомными ядрами, связанными в твердом теле, не сопровождающееся изменением внутренней  [c.300]

А. может быть искусственно вызвана внеш. воздействием. Поликристаллич. материалы, состоящие из огромного числа случайно ориентированных мелких монокристаллов, могут приобрести А. в результате механич. обработки, напр, прокатки (см. Текстура). Искусственная оптич. А. может быть создана в кристаллах и изотропных средах под действием внеш. электрич, (см. Керра эффект) или маги, (см, Коттона—Мутона эффект) поля либо путём механич. воздействия (см. Фото-упругостъ).  [c.84]

Большое число АФМ прозрачно в видимой области эл.-магн. спектра. В одноосных прозрачных АФхМ обнаружено значит, изменение линейного двойного лу-чег реломлепия света (см, Коттона — Мутона эффект), пропорциональное L . Величина двойного лучепреломления сравнима с круговым двойным лучепреломлением Фарадея эффектом) в ферримагнетиках. Магн. двойное лучепреломление в АФМ определяется зависимостью тензора диэлектрич. проницаемости е от величины ко.мпонентов вектора L.  [c.112]

Наведённая О. а. может возникать в оптически изотропных средах под внеш. воздействием, меняющим локальную сил1метрию. Такими воздействиями могут быть механич., алектрич., магн. поля, мощные потоки излучения см. Фотоупругость, Керра эффект, Фарадея эффект, Коттона —Мутона эффект. Нелинейная оптическая активность).  [c.428]

ФОГТА ЭФФЕКТ —один из эффектов магнитооптики, заключающийся в возникновении двойного лучепреломления ЭЛ.-маги, волны (обычно света) при её распространении в твёрдых телах (напр., кристаллах) в направлении, перпендикулярном внеш. магн, полю, в к-ром находится тело. Этот эффект наз. также Коттона — Мутона лффектом. если свет распространяется в газе или жидкости, т. е. в средах со свободными молекулами, имеющими спонтанный или индуцированный магн. момент. Назван по имени В. Фогта (V. Voigt).  [c.330]

В связи с этим следует упомянуть о другом соединении, также действующем, очевидно, в основном по контактному механизму, о бензтриазоле eHsNs. Это соединение предложено английским исследователем Коттоном [178] для защиты от коррозии меди. Механизм его действия связывается с образованием нерастворимого комплекса меди. Оно уже в течение ряда лет используется в виде ингибитированной бумаги для защиты от коррозии медных сплавов в процессе их транспортировки и хранения.  [c.327]

Дж. Коттон [176] исследовал зависимость скорости коррозии анодно защищенного и незащищенного титана от концентрации серной кислоты (рис. 97). Результаты опытов показывают, что анодная защита значительно повышает коррозионную стойкость титана. При 60° С в серной кислоте до 65%-ной концентрации скорость коррозии анодно защищенного Ti составляла 0,025 мм/год. При90° С веерной кислоте до 57%-ной концентрации скорость  [c.140]

Как и под действием электрического поля оптические характеристики материалов могут изменяться в результате воздействия магнитного поля. Различают линейные магнитооптические Эффекты [10, 21]—эффект Фарадея для проходящего через кристалл светового пучка и эффект Керра для отраженного света, а также пропорциональный квадрату напряженности магимт-пого поля эффект Коттона—Мутона (практически не используется в модуляторах).  [c.26]


Смотреть страницы где упоминается термин Коттон : [c.294]    [c.918]    [c.926]    [c.69]    [c.69]    [c.70]    [c.70]    [c.396]    [c.921]    [c.257]    [c.483]    [c.34]    [c.491]    [c.560]    [c.349]    [c.482]    [c.482]    [c.529]    [c.686]    [c.701]    [c.186]    [c.578]    [c.212]    [c.214]    [c.124]    [c.280]    [c.209]   
Теоретическая механика Том 2 (1960) -- [ c.257 ]



ПОИСК



Двойное лучепреломление в магнитном поле (явление Коттон — Мутона) МОЛЕКУЛЯРНАЯ ОПТИКА Дисперсия и абсорбция света

Коттон (Cotton Aime)

Коттон (Cotton)

Коттон — Му юна явление

Коттон-пкккер

Коттона — Мутона постоянная

Коттона — Мутона постоянная эффект

Магнитооптика эффект Коттон — Мутона

Фойгта Коттона — Муттона эффект

Явление Коттон — Мутона



© 2025 Mash-xxl.info Реклама на сайте