Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нормальные колебания поведение по отношению к операциям

Так как инверсия может быть заменена последовательными операциями отражения в трех взаимно перпендикулярных плоскостях, то поведение нормальных колебаний молекул, принадлежащих к точечной группе по отношению к инверсии (столбец 6) можно получить простым перемножением столбцов 3, 4 и 5 табл. 14. В силу того, что поворот на 180° вокруг оси симметрии второго порядка может быть заменен инверсией с последующим отражением в плоскости, перпендикулярно оси второго порядка (см. стр. 15), го поведение нормальных колебаний по отношению к трем осям второго порядка (столбцы 7, 8, 9) получается перемножением столбцов 3, 4 и 5, соответственно, на столбец 6.  [c.121]


Более общий случай дважды вырожденных колебаний. Рассмотренное нами поведение нормальных координат по отношению к операциям симметрии можно также получить из требования инвариантности потенциальной энергии  [c.107]

Два простых примера. В то врэмя как невырожденные колебания по отношению к любой операции симметрии могут быть только симметричными или антисимметричными, вырожденные колебания могут претерпевать изменения, большие, чем простое изменение знака. Прежде чем изучать причины такого поведения, рассмотрим два примера. На фиг. 25,6 изображены нормальные колебания линейной симметричной трехатомной молекулы типа ХУ, (например, молекулы СО.2). Очевидно, колебания и v,,, являются вырожденными колебаниями. Они, как и колебание v , являются антисимметричными относительно отражения в центре симметрии. Другой операцией симметрии является  [c.96]

Полная колебательная собственная функция (1 , согласно (2,46), является произведением собственных функций <1(50, <1 2( 2)>--- гармонических осцилляторов, соответствующих ЗЛ —6 или ЗЛ —5 нормальным координатам. Поэтому, если мы имеем только невырожденные нормальные колебания, то полная собственная функция по отношению к данной операции симметрии будет симметричной при условии, что число множителей ( ,/), антисимметричных относительно этой операции симметрии, является четным полная собственная функция будет антисимметричной, если имеется нечетное число антисимметричных множителей. Поведение полной собственной функции [Ю отношению к данной операции симметрии не зависит от числа симметричных множителей. Иначе говоря, в силу антисимметричности функций 4 г( ) антисимметричных нор-  [c.115]

Симметрия полной колебательной собственной функции, разумеегся, определяется опять поведением множителей, входящих в нее, относительно операций симметрии. Если, например, в линейной трехатомной молекуле типа XY. возбуждается по одному кванту каждого из трех нормальных колебаний (фиг. 25, б), то полная собственная функция будет антисимметричной по отношению к отражению в плоскости, проходящей через атом X перпендикулярно оси молекулы, однако она будет вырожденной относительно поворота на произвольный угол вокруг оси молекулы.  [c.117]


До сих пор мы рассматривали поведение нормальных колебаний и колебательных собственных функций только по отношению к отдельным операциям симметрии. Однако, в силу того что различные точечные группы характеризуются только известными комбинациями элементов симметрии (см. стр. 15) и что одни из этих элементов симметрии являются необходимым следствием других, возможны только определенные комбинации свойств симметрии нормальных колебаний и колебательных (и электронных) собственных функций, что было впервые показано Брестером [178]. Мы будем называть такие комбинации свойств симметрии типами симметрии (см. Мелликен [643]). В теории групп они соответствуют так называемым неприводимым представлениям, некоторые авторы предпочитают применять этот последний термин. Типы симметрии для всех молекул, за исключением молекул, принадлежащих к кубической точечной группе (см. также Плачек [700]) можно весьма легко определить на основании предыдущего, не прибегая явно к помощи теории  [c.118]


Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.0 ]



ПОИСК



Колебания нормальные

Операции над отношениями в РБД

Отношение

Поведени



© 2025 Mash-xxl.info Реклама на сайте