Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система уравнений идеально пластического тела

Для определения и еу в общем случае получается система связанных между собой дифференциальных уравнений. Однако встречаются важные простые случаи, когда задачу об определении напряженного состояния идеально-пластического тела можно решить независимо от задачи об определении остаточных пластических деформаций.  [c.461]

В заключение разберем один из методов построения сетки линий скольжения и определения напряжений при плоской деформации идеально пластического тела. Решая задачу плоской деформации идеально пластического тела, многие исследователи строят в целях детального изучения напряженного состояния два взаимно ортогональных семейства линий скольжения. С этой целью применяются различные приемы численного или аналитического интегрирования системы дифференциальных уравнений (6-4). Приведем еще один, до некоторой степени оригинальный метод решения 172  [c.172]


А.Ю. Ишлинский [12] предложил соотношения пространственного состояния идеально-пластического тела, предполагая, аналогично Хаару и Карману, что условие текучести определяется не одним, а двумя соотношениями для пространственной задачи пластичности имеют место два соотношения между главными напряжениями, подобно гипотезе полной пластичности Хаара и Кармана. Этим предлагаемая теория отличается от теорий Леви и Мизеса, в которых принижается единственное соотношение. Для построения замкнутой системы уравнений обоим, авторам (Леви и Мизесу — Д.И.) приходится вводить излишне большие ограничения на величины пластических деформаций или скоростей деформирования, если рассматривается течение пластической среды). Именно, принимаются справедливыми четыре соотношения  [c.34]

Эту систему уравнений, известную в математической теории пластичности под названием системы уравнения течения идеально пластического вещества , необходимо проинтегрировать, и тогда мы от рассмотрения напряженного состояния отдельных произвольно выделенных частиц деформируемого тела можем перейти к суждению о напряженном состоянии всего тела в целом или в каких-либо его сечениях, интересующих нас.  [c.207]

Полные решения задач удается найти не всегда. По-видимому, ото связано пе только с вычислительныдш труд-постяли решения полной системы уравнений, но и с вопросом о существовании таких решений. Дело в том, что теорема существования решения задач идеально пластических сред не доказана если допустить, что она и не может быть доказана (хотя постановка задач о поведении идеально пластических тел физически непротиворечива), то это следствие того, что модель идеально пластического (и, в особенности, жесткопластического) тела в некоторых случаях мон<ет оказаться крайней идеа.иизацией 1>е-альных свойств материала и конструкции.  [c.109]

Для исследования напряженного состояния в окрестности вершины трещины нонеречного сдвига в идеально пластическом теле можно применить аналогичный ранее исиользованному подход. Очевидно, что разрешающая система уравнений будет пдентпчной рассмотренной в разделе , однако условия  [c.239]

Содержание книги составляют статьи автора, посвященные теории идеальной пластичности и ее приложениям. Статьи содержат изложение построения и исследование общих соотношений теории идеальной пластичности на основе статически определимой системы уравнений гиперболического типа, адекватно описывающих сдивиговый характер пластического деформирования. Излагаются обобщения теории на случай сжимаемых и анизотропных сред, приведены решения о вдавливании жестких штампов, внедрении жестких тел, о сжатии пластического слоя шероховатыми плитами и т.д.  [c.2]



Механика сплошной среды. Т.2 (1970) -- [ c.0 ]



ПОИСК



Идеальные тела

Система идеальная

Тело идеально-пластическое

Тело пластическое



© 2025 Mash-xxl.info Реклама на сайте