Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальное уравнение Фурье — Кирхгофа

Используя уравнение переноса (1-2-16) и полагая удельный поток энтальпии равным потоку тепла jq(fh=iq)< из уравнения (1-2-87) получаем дифференциальное уравнение Фурье—Кирхгофа [Л. 1-2]  [c.23]

Дифференциальное уравнение Фурье — Кирхгофа описывает перенос тепла в движущейся среде. Если пренебречь диффузионной теплопроводностью и переносом теплоты за счет диффузии, то в отсутствие поля внешних сил уравнение примет вид  [c.93]


ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ФУРЬЕ — КИРХГОФА  [c.30]

Полученное уравнение является дифференциальным уравнением Фурье — Кирхгофа. Левая часть уравнения (1-9-4) отражает полное изменение энтальпии текучей среды в данной точке. В правой части первый член характеризует диффу-. зионный перенос тепла (теплопроводностью и диффузионной теплопроводностью). Второй член является источником тепла, обусловленным источником массы Оу1 за счет фазовых или химических превращений. Третий член (йр (1х) отображает работу сил давления последующий член (а у) является источником тепла за счет диссипации энергии движения, т. е. за счет работы сил внутреннего трения. Предпоследний член отображает перенос тепла за счет диффузионного переноса  [c.31]

Рассмотрим процессы теплообмена, в которых теплопроводность является основным фактором в переносе тепла. Дифференциальное уравнение Фурье — Кирхгофа (1-9-4) описывает перенос энергии в движущейся среде. Если пренебречь диффузионной теплопроводностью (Q = 0) и переносом тепла за счет диффузии, то в отсутствие поля внешних сил уравнение примет вид  [c.95]

Это и есть дифференциальное уравнение теплопроводности Фурье —Кирхгофа. Оно устанавливает связь между временными и пространственными изменениями температуры в любой точке движущейся среды здесь а — коэффициент температуропроводности и — оператор Лапласа.  [c.38]

Большое внимание решению задач теории поля на структурных моделях уделено в работе [95]. Исследование нелинейных задач теплопроводности на структурных моделях проводилось в Куйбышевском авиационном институте (см., например, [135, 136, 139]). Согласно принятой в этих работах методике нелинейное уравнение теплопроводности с помощью подстановки Кирхгофа приводилось к уравнению типа Фурье, но с нелинейной правой частью. После применения метода прямых это уравнение сводилось к системе обыкновенных дифференциальных уравнений, которая затем решалась на структурной модели.  [c.54]

Уравнение Фурье — Кирхгофа получается из дифференциального уравнения переноса энтальпии (1-5-8), если в него вместо  [c.30]

Выведенное дифференциальное уравнение теплопроводности Фурье—Кирхгофа (2.16) в случае неподвижной среды и отсутствия внутренних источников тепла имеет вид  [c.82]


Л. 68]. Этим игнорируется дискретность сы пучей среды, особенно сильно проявляющаяся именно при поперечном обтекании тел. Уравнение энергии по существу записано в форме дифференциального уравнения Фурье — Кирхгофа для стационарного двухмерного поля. Для отличия движущегося слоя от неподвижного в [Л. 118] принимается, что коэффициент пропорциональности не равен коэффициенту эффективной теплопроводности неподвижного слоя и аналогичен коэффициенту теплопроводности при турбулентном теплообмене. Однако в критериальных уравнениях Ми сл и Ре сл выражены через эффективные характеристики неподвижного слоя. При этом коэффициенты наружного и внутреннего трения движущегося слоя использованы в качестве аргументов неправильно, так к к они зависят от условий  [c.349]

Уравнение (III. 6-5) имеет вид общего уравнения баланса (III.4-1), поэтому в силу (III.4-4) оно локально эквивалентно в областях, где рё, ps, w и divh непрерывны, следующему дифференциальному уравнению (Фурье, Кирхгоф, К. Нейман)  [c.147]

Если коэффициент теплопроводности зависит от температуры тела, то дифференциальное уравнение Фурье нелинейно. Уравнение также является нелинейным если поверхность тела охлаждается через излучение. При решении задач первого типа очень удобным оказывается введение переменной Кирхгофа, позволяющей ли-неализировать уравнение.  [c.214]

Полученное уравнение называется дифференциальным уравнением переноса энергии (иногда его называют уравнением Фурье — Кирхгофа). Оно устанавливает связь между временнйми и пространственными изменениями температуры в любой точке движущейся жидкости. Множитель к/ср = а — это температуропроводность, о физическом смысле которой было сказано в 14.1. Сумма вторых производных температур по координатным осям обозначается символом который называется оператором Лапласа. Тогда уравнение (14.4) можно записать так  [c.231]


Смотреть страницы где упоминается термин Дифференциальное уравнение Фурье — Кирхгофа : [c.81]    [c.3]   
Смотреть главы в:

Тепломассообмен  -> Дифференциальное уравнение Фурье — Кирхгофа


Тепломассообмен (1972) -- [ c.30 , c.68 , c.201 ]



ПОИСК



Кирхгофа

Уравнение Кирхгофа

Уравнение Фурье

Фурье (БПФ)

Фурье — Кирхгофа уравнение



© 2025 Mash-xxl.info Реклама на сайте