Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основное уравнение электронной оптик

Выражение (2.14.15) называют основным уравнением электронной оптики.  [c.126]

Штрих означает производную . Здесь Р ж Q — заданные функции Z. Это дифференциальное уравнение второго порядка — фундаментальное в электронной оптике им в основном и определяется образование изображения в электронном микроскопе ). Чтобы исследовать аберрации, нужно привлечь приближения высших порядков ).  [c.113]


НЛО, например, получение гармоник, смешение света, самофокусировку, вынужденное комбинационное рассеяние (см. гл. 3 и 4), которые не могут быть объяснены на основании материального уравнения линейной оптики. То обстоятельство, что при не слишком больших напряженностях поля величина превалирует над не означает, что р1 является каким-то дополнительным членом к обусловленным побочными эффектами или свойствами. Существование нелинейной части поляризации непосредственно связано с основными физическими закономерностями (см. гл. 2), например с зависимостью потенциала точечного заряда от расстояния по закону 1/г, с существованием силы Лоренца, с взаимодействием электронного и ядерного движений в атомных системах или в магнитном случае с фундаментальной зависимостью между магнитным моментом и моментом количества движения протонов и вообще атомных ядер.  [c.41]

Мы рассмотрели основные законы движения заряженных частиц в электрическом и магнитном полях. Сначала мы определили лагранжиан частиц (уравнение (2.15)). Закон сохранения энергии позволил представить скорость частицы в виде функции потенциала (уравнение (2.31)). Затем были получены релятивистские уравнения движения (2.50) — (2.52) в обобщенной ортогональной криволинейной системе координат. Были рассмотрены частные случаи уравнений движения в декартовой (уравнения (2.53) — (2.55) и цилиндрической (2.60)—(2.62) системах координат. Уравнения движения были затем преобразованы в траекторные уравнения (2.76) —(2.77), (2.80), (2.81) и (2.84) — (2.85) соответственно. Мы ввели релятивистский потенциал (уравнение (2.89)) и показали, что он позволяет использовать нерелятивистские уравнения в магнитных полях даже в случае высоких энергий частиц. Затем был введен электронно-оптический показатель преломления (соотношение (2.92)) и установлены аналогии между геометрической оптикой, с одной стороны, и электронной и ионной оптикой, — с другой. Были определены траектории частиц в однородных электростатическом и магнитном полях посредством точного решения траекторных уравнений. В качестве практических примеров рассмотрены плоские конденсаторы, длинные магнитные линзы, электростатические и магнитные отклоняющие системы, простые анализаторы масс и скоростей. Наконец, были приведены законы подобия электронной и ионной оптики (соотношения (2.183) — (2.188) и (2.190)).  [c.63]


Используя аналогию между оптикой тонких пленок и электронной зонной теорией твердого тела, нетрудно показать существование мод, локализованных вблизи границ раздела многослойной и однородной сред. Аналогично тому, как поверхностные состояния описывают примеси вблизи границ твердого тела, особые волны могут быть возбуждены и вблизи границ раздела мультислоя. Свойства этих волн можно изучать [41], отыскивая вещественные корни уравнения (3.18.5) и получая распределение поля с помощью рассмотренной выше теории электрических цепей. На рис. 3.29, дг показано поперечное распределение поля для типичной основной поверхностной моды, направляемой периодической структурой.  [c.219]


Смотреть страницы где упоминается термин Основное уравнение электронной оптик : [c.654]   
Дифракция и волноводное распространение оптического излучения (1989) -- [ c.126 ]



ПОИСК



Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте