Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тензор вращения в несимметричный

Как было отмечено выше, эквивалентное неповрежденное тело может быть собрано в одно целое из эквивалентных элементарных объемов многими способами. Ясно также, что вращения эквивалентных элементов в процессе сборки следует исключить, что равносильно требованию симметричности тензора фиктивной дисторсии С. Можно, однако, считать тензор С несимметричным и учесть указанную инвариантность относительно вращений эквивалентных элементов следующим образом.  [c.430]


Заслуживает внимания применение общего уравнения динамики к проблеме приведения [3.43]. В основе метода лежит аппроксимация искомых функций конечными рядами (не обязательно степенными), а затем реализация вариационного принципа, приводящего к приближенным дифференциальным уравнениям и соответствующим краевым условиям. Этим методом Д. В. Бабич в 1966 г. построил динамическую теорию оболочек в криволинейных координатах с учетом несимметричности тензора напряжений [3.14]. Он исходил из аппроксимации компонент вектора перемещений и вектора вращений конечными степенными суммами и из вариационного принципа Гамильтона—Остроградского и вывел дифференциальные уравнения движения и естественные краевые условия.  [c.186]

Чтобы корректно учесть эффект Магнуса, связанный с F12, необходимо учитывать вращение частпц и в общем случае вводить соответствующий кинематически независимый от поля с., параметр ы.,. Если при этом принимать во внимание внешнее мо-5 ентное воздействие (магнитное поле), инерционные п динамичес-кпе эффекты этого вращения, то тензор напряжений фаз может быть несимметричным, и нужно использовать уравнение сохранения момента количества движения фаз ).  [c.36]

В технологических процессах интерес представляет случай дисперсной смеси с частицами из ферромагнитного материала в магнитном поле, которое оказывает непосредственное моментное воздействие лишь на частицы (2-я фаза). Это приводит к их ориентированному мелкомасштабному враш,ению (Mj =5 0) с угловой скоростью 2, кинематически независимой от поля их осреднен-ных скоростей v . Вращение частиц за счет сил трения передается и несущ,ей фазе и приводит к мелкомасштабному с характерным линейным размером, равным размеру частиц, ориентированному вращению несущей жидкости М =7 0), Если магнитное поле не оказывает непосредственного воздействия на несущую фазу, т. е. она остается неполярной, то тензор напряжения в ней будет симметричным, а во второй фазе— несимметричным, причем его несимметрическая часть определяется воздействием внешнего магнитного поля на частицы. Симметричность тензора напряжений несущей фазы вытекает из симметричности тензора микронапряжений o l и совпадения среднеповерхностпых и среднеобъемных величин, что в свою очередь вытекает из регулярности этих величин. Несмотря на эти допущения, уравнения импульса и внутреннего момента несущей фазы могут быть приведены к некоторому виду, где, как и для дисперсной фазы, фигурирует несимметричный тензор поверхностных сил aji (см. 1,6 гл. 3).  [c.83]


Приведенное напряжение можно рассматривать как среднее напряжение вдоль = dsj -Ь ds ig (см. примечание при обсуждении (2.2.9)). Даже при симметричном тензоре микронапряжений a тензор может быть несимметричным (например, при интенсивном ориентированном вращении частиц с угловой скоростью щ) за счет 0 3 или rjjg, т. е. за счет включения в аjj, части межфазной силы i 2lS Действующей вдоль rfsgiS Поэтому нельзя согласиться с утверждением [4, 6 ], что феноменологическое введение антисимметричных макроскопических напряжений в суспензиях при отсутствии антисимметричных напряжений в микромасштабе (как это сделано в (1 ]) лишено физического смысла. В то же время следует отдавать отчет в том, что представления главного вектора поверхностных сил с несимметричным тензором напряжений < в виде + я/л и с симметричным тензором  [c.98]

Здесь, как и выще, т],/ является мерой инородной материи. Е. Кренер называет эти уравнения эйнштейновыми ). Они охватывают кривизну структуры , вызванную дислокациями, так как содержат коэффициенты вращения и влияние инородных включений, отображенное тензором г ш- Несимметричные относительно нижних индексов коэффициенты параллельного переноса (коэффициенты аффинной связности) впервые встретились в механике неголономных систем при введении неголономных систем отнесения. Это вновь приводит к представлению о деформировании сплошной среды как о результате некоторого неголо-номного преобразования ( 61).  [c.537]

В трехмерном пространстве число функциональных степеней свободы уменьшается. Если, следуя Кренеру, рассматривать несимметричный тензор т]гй, то система будет иметь 15 функциональных степеней свободы, но при этом надо ввести обобщенный тензор R h, известный из неголономной геометрии, и потребовать, чтобы коэффициенты вращения Риччи не зависели от закона движения элемента сплошной среды. При симметричном тензоре т] система будет иметь 12 функциональных степеней свободы в трехмерном пространстве. Аналогичные заключения можно сделать об уравнениях (2.23).  [c.22]


Смотреть страницы где упоминается термин Тензор вращения в несимметричный : [c.174]    [c.67]    [c.41]    [c.42]    [c.17]   
Теория упругости (1975) -- [ c.798 , c.800 , c.807 ]



ПОИСК



Несимметричность

Тензор вращения



© 2025 Mash-xxl.info Реклама на сайте