Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения гиростатической систем

Если подставить теперь значение (20) в уравнения (15), то получим общие уравнения гиростатической системы в форме )  [c.244]

Р гу имеют вид, который мы уже встречали в общих уравнениях гиростатической системы ( 141) их можно поэтому называть, гиростатическими членами .  [c.710]

Уравнения гиростатической системы 245.  [c.926]

При распространении на случай общей лагранжевой системы гиростатическими называются те члены функции линейные относительно q, которые влияют на уравнения движения системы, но не входят в обобщенный интеграл энергии. Из сказанного вначале следует, что гиростатическими членами живой силы Т, наверное, будут члены, линейные относительно q во всех тех динамических задачах, в которых как Г, так и потенциал U не зависят от времени.  [c.302]


Если в уравнениях движения вполне определенной системы с конечным числом степеней свободы (4) 135 изменить знак элемента времени dt, то уравнения остаются без изменения. Движение, таким образом, обратимо, т. е. если при прохождении системы через некоторое определенное положение скорости q , Qn будут обращены, то система (если силы в одинаковых положениях будут всегда одинаковы) пройдет свой первоначальный путь в противоположном направлении. Важно заметить, что сказанное не всегда имеет место для гиростатической системы именно, те члены в (23), которые линейны относительно ( у, q , меняют свой знак одновременно с 8t, в то время как другие члены не делают этого. Следовательно, в рассматриваемом нами случае движение тел будет необратимо, если только мы не предположим, что циркуляции также меняют свой знак одновременно со скоростями qi, qn ).  [c.245]

Если в уравнениях движения гиростатической системы (23) 141 положить  [c.533]

Движение гиростата вокруг центра тяжести. Понятие о задаче ОБ изменении широт. Основное уравнение моментов сохраняет, как известно, для материальной системы свой вид (47 ) также и в том случае, когда центр моментов во все время движения совпадает с центром тяжести системы. Это, в частности, имеет силу также и для гиростата, центр тяжести G которого в силу самого определения системы является точкой, неизменно связанной с твердой частью S. Как уже было отмечено выше (п. 24), то же самое можно сказать и о главных осях инерции относительно точки G, так что уравнение (47 ) продолжает оставаться в силе, если оно отнесено к этим осям. Это уравнение и в данном случае может однозначно определить гиростатический момент х, если известно движение 5 около О и задан результирующий момент внешних сил.  [c.221]

Уравнения Эйлера-Пуассона (1.6) можно обобщить, если ввести постоянный гиростатический момент, моделируемый, например, уравновешенным ротором, который вращается с постоянной угловой скоростью вокруг оси, неподвижно закрепленной в твердом теле. Такая система называется уравновешенным гиростатом. Аналогичный момент возникает при рассмотрении движения твердого тела с многосвязными полостями, содержащими идеальную несжимаемую жидкость, допускающими возможность возникновения ненулевой циркуляции [78] (см. 2 гл. 5).  [c.151]

В тексте мы рассматривали уравнения малых колебаний для голо-номной системы со связями, не зависящими от времени, и находящейся под действием консервативных сил. Если система допускает игнорируемые координаты и вычисляется приведенная функция Лагранжа, то появляются, как мы знаем (гл. V, п. 46), гиростатические члены. В п. 24 мы указали форму (30), которая в этом случае свойственна уравнениям малых колебаний около положения устойчивого равновесия было показано, что гиростатические члены не влияют на интеграл энергии, из рассмотрения которого также и в этом случае становится очевидной устойчивость на основании критерия Дирихле.  [c.414]


Если за основные неизвестные принимаются углы Эйлера б, <в, I, определяющйе относительно неподвижных осей, проходящих через точку О, положение неизменяемой части 5, то векторы ы К могут быть выражены в функциях от 6, , ф и от их первых производных. То же самое можно сказать и о векторе М, если мы ограничимся случаем (который не является наиболее общим из возможных), когда внешние силы, предполагающиеся заданными, зависят от положения и состояния движения одной только твердой части S. Остается еще гиростатический момент х, который выражает влияние циклических движений уравнение (47) или равносильное ему уравнение (47 ) уже не будет достаточным для постановки задачи о движении системы S до тех пор, пока не удастся каким-нибудь способом определить вектор X. для чего, вообще говоря, требуется изучение механического поведения частей S системы S- Рассмотрим пока частный случай, пригодный для интересных приложений, когда задача упрощается, поскольку сами предположения позволяют заранее видеть, что гиростатический момент является постоянным, В общем случае, следуя  [c.220]

Будем считать, что / , Л,- — некоторые известные функции времени. Например, если в твердом теле имеются симметричные маховики, свободно вращающиеся вокруг своих осей, то главные моменты инерции и гиростатические моменты будут постоянными величинами. Такую систему Кельвин назвал гиростатом. В динамике изменяемого тела возможны и другие постановки задачи. Например, Зейлигер и Чета-ев рассматривали подобно изменяемое тело и для замыкания системы уравнений (3.15)-(3.16) добавляли уравнение для скорости лучистого расширения.  [c.200]


Гидродинамика (1947) -- [ c.245 ]



ПОИСК



Уравнения гиростатической систем вязкой жидкости



© 2025 Mash-xxl.info Реклама на сайте