Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластмассы слоистые Физико-механические свойства

Физико-механические свойства пластмасс со слоистыми наполнителями обусловлены свойствами этих наполнителей (а не свойствами связующих веществ).  [c.359]

В табл. 19.7 приведены физико-механические свойства некоторых слоистых пластмасс.  [c.362]

История развития синтетических конструкционных материалов в нашей стране начинается в годы первой пятилетки с использования фенопластов в качестве поделочного материала в машиностроении. В 1930—1933 гг. были проведены экспериментальные работы по использованию текстолита для изготовления тяжелонагруженных подшипников скольжения со смазкой водой взамен бронзы и баббита. С 1935 г. в значительной части прокатных станов бронзовые вкладыши подшипников были заменены текстолитовыми. Многолетний опыт эксплуатации указанных вкладышей подтвердил их высокую износостойкость, низкий коэффициент трения и другие техникоэкономические преимуш ества. В дальнейшем вкладыши из текстолита в некоторых прокатных станах были заменены древесно-слоистыми пластиками, которые по физико-механическим свойствам не уступают текстолиту, а по стоимости значительно дешевле его. Кроме того, текстолит применялся в эти годы в качестве поделочного конструкционного материала. Значительная часть фенопластов использовалась для выпуска электроустановочных изделий (патроны, штепселя, выключатели и др.). Органическое стекло нашло широкое применение для остекления кабин самолетов. В годы войны пластмассы использовались для удовлетворения нужд фронта (минные и артиллерийские взрыватели, детали авиационного, радио- и электротехнического назначения и др.).  [c.214]


Физико-механические свойства пластмасс, применяемых для изготовления деталей машин, приведены в т. 6 наиболее употребительный материал для зубчатых колес — термопласты на основе полиамидных смол типа капрона значительно реже для этой цели используются термореактивные слоистые пластмассы (текстолит и др.) вследствие их необратимости, более высокой стоимости, меньшей прочности и сложности обработки.  [c.411]

Термин стеклопластики охватывает обширную группу слоистых пластмасс с разными физико-механическими свойствами, химической стойкостью, следовательно, и с различными возможностями их применения. Свойства стеклопластиков определяются совокупностью многих факторов, в частности, природой и свойствами стеклянных волокон, природой и свойствами связующего — синтетических смол-, соотношением этих компонентов, условиями изготовления, поверхностной обработкой волокон и многими другими факторами.  [c.165]

Физико-механические свойства слоистых армированных пластмасс в обобщенном виде даны в табл. 43.  [c.604]

Вторым по значению (после связующих) исходным материалом при изготовлении деталей из пластмасс являются наполнители, оказывающие весьма существенное влияние на физико-механические свойства готовых деталей. В качестве наполнителей применяют следующие материалы порошкообразные (древесную муку, измельченный кварц, сажу, графит и т. д.) волокнистые (волокнистый асбест, хлопковые очесы, стеклянное волокно) листовые (хлопчатобумажные ткани, стеклоткань, асбестовые листы, бумажные листы, древесный шпон). Пластмассы с листовыми наполнителями называют слоистыми пластиками.  [c.282]

Выбор критерия затупления режущего инструмента при обработке слоистых пластмасс имеет особенности, определяемые физико-механическими свойствами этих материалов и характером износа инструмента.  [c.18]

Физико-механические свойства слоистых пластмасс позволяют с большими преимуш,ествами использовать их для изготовления цельных и сборных зубчатых и червячных колес в различных силовых передачах. До последних лет для этих целей применялся текстолит, гетинакс и ДСП. В настоящее время в зубчатых и чер вячных передачах находит применение полиэтилен, капрон и полиамиды других марок.  [c.113]

В зависимости от вида и состава наполнителей пластмассы делят на слоистые, волокнистые, порошковые и газонаполненные. Физико-химиче-ские и механические свойства пластмасс приведены в табл. 8.63.  [c.364]


В отличие от металлов слоистые пластики обладают меньшей теплопроводностью (в 200— 1500 раз меньшей, чем сталь или медь), в связи с этим следует учитывать, что при неправильных режимах резания может происходить подгорание пластмасс с поверхности или возникновение в результате перегрева процессов деструкции, приводящих к ухудшению физико-механических и электрических свойств материала.  [c.343]

Физико-механические и диэлектрические свойства пластмасс. В табл. 8 приведены основные разновидности и свойства композиционных порошкообразных и волокнистых, а в табл. 9 — слоистых пластмасс.  [c.295]

Физико-механические и диэлектрические свойства пластмасс. В табл. 8 и 8а приведены основные разновидности и свойства композиционных порошкообразных и волокнистых пластмасс, а в табл. 9 — слоистых пластмасс. К композиционным пластикам и смолам относятся также следующие материалы  [c.341]

В зависимости от физико-механических и химических свойств эпоксидные смолы служат для получения слоистых пластмасс, клеев, лаков и т. д. Очень эффективно применение эпоксидных смол в качестве связующего при формовании крупногабаритных изделий с волокнистыми наполнителями. Эпоксидные смолы отличаются хорошей адгезией по отношению к металлам. Клеи иа их основе дают прочные соединения.  [c.151]

Общие сведения (257). Основные физико-механические свойства пластмасс (258). Пластмассы в машиностроения (260). Применение пластмасс в машиностроении (268). Сравнительные физико-меха-пические свойства некоторых конструкционных материалов (270). Признаки, по которым можно определить вид пластмассы (270). Физико-механические показатели термопластических материалов (272). Механические свойства полиамидных смол отечественных марок (274). Антифрикционные свойства деталей из капрона в зависимости от вида термической обработки (274). Антифрикционные свойства капрона и металлических антифрикционных материалов (274). Примерное назначение термопластических материалов (275). Сравнительные физико-механические показатели материалов, применяемых для изготовления подшипников (278). Предельные нагрузки па подшипники из пластмасс (280). Физико-механические свойства термореактивных материалов (280). Примерное назначение прессовочных материалов (282). Физико-мёханические свойства конструкционных слоистых пластиков < (286). Фиаико-механические показатели стеклопластиков (288). Примерное назначение термореактивных материалов (288).  [c.536]

При решении вопроса о применении отдельных видов пластиков следует учитывать их специфические особенности. Так например, слоистые пластики (текстолит, гетинакс, дельта-древесина или лигнофоль и др.) анизотропны, т. е. имеют различные свойства в различных направлениях, зависящие главным образом от расположения слоёв и соотношения наполнителя и смолы в готовом материале. Высокое сопротивление воздшштвию вибрационных нагрузок хотя и выгодно отличает пластмассы от металлов, однако повышенная хрупкость (и не всегда достаточная прочность) прессованных деталей из порошкообразных пластмасс ограничивает их применение в силовых элементах конструкций. Термореактивные, а в особенности термопластичные материалы подвержены пластической деформации (текучести на холоду) под влиянием постоянно действующих нагрузок физико-механические свойства большинства пластиков сильно зависят от температуры и влаасности среды, в которых должен работать материал размеры деталей из пластмасс могут изменяться не только под влиянием постоянно действующих нагрузок и окружающей среды, но и в результате изменений, происходящих в процессе старения.  [c.293]

Фенопласты — пресспорошки, волокниты и слоистые материалы — составляют большую группу термореактивных пластмасс отличаются относительно высокими физико-механическими свойствами, теплостойкостью и способностью заполнять пресс-форму. Повышенной ударной вязкостью обладают ФКП — пресспорошки, модифицированные каучуком и полимеризационными смолами повышенной химической стойкостью — фенолиты и декоррозиты. Для изготовления деталей применяют гранулы (таблетки).  [c.265]


Общие сведения (301). Основные физико-механические свойства пластмасс (302). Пластмассы в машиностроении (304). Сравнительные физико-механические свойства некоторых конструкционных материалов (312). Признаки, по которым можно определить вид пластмассы (314). Эксплуатационные признаки пластмасс (316). Твердость и износостойкость пластмасс (317). Физико-меха-нические показатели термопластических материалов (318). Механические свойства полиамидных смол отечественных марок (320). Аитифрпкциопиые свойства деталей из капрона в зависимости от впда термической обработки (320). Антифрикционные свойства капрона п металлических антифрикционных материалов (320). Примерное назначение термопластических материалов (321). Физико-механические свойства термореактивных материалов (323). Физико-механические свойства конструкционных слоистых пластиков (324). Физико-мехаипческие показатели стеклопластиков (326). Примерное назначение термореактивных материалов (326).  [c.542]

В связи с тем, что слоистые пластмассы являются анизотропными материалами и их физико-механичеаиие свойства изучены недостаточно, аналитический расчет силы резания при их механической обработке невозможен. Поэтому определение силы резания при обработке пластмасс производится исключительно экспериментальными методами.  [c.40]


Смотреть страницы где упоминается термин Пластмассы слоистые Физико-механические свойства : [c.310]    [c.1061]   
Справочник машиностроителя Том 2 (1952) -- [ c.295 ]



ПОИСК



59-1-Механические Физико-механические свойства

Пластмассы Свойства

Пластмассы Физико-механические свойства

Пластмассы древесно-слоистые — Гнуть свойства 295 — Механические свойства — Зависимость от температуры 302 — Применение 296 — Физико-механические свойства

Пластмассы, механические свойства

Слоистые пластмассы

Физико-механические свойств

Физико-механические свойства и особенности механической обработки слоистых пластмасс Физико-механические свойства пластмасс

Физико-механические свойства свойства



© 2025 Mash-xxl.info Реклама на сайте