Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинетическое уравнение Больцмана для квантовой системы в сильном

Квантовое уравнение Больцмана. Рассмотрим разреженный газ частиц, взаимодействие между которыми описывается короткодействующими силами. В нервом приближении кинетические процессы в системе можно описать с помощью парных столкновений. В случае сильного взаимодействия требуется более точное описание рассеяния двух частиц, так как борновское приближение, рассмотренное в разделе 4.1.6, становится неприменимым.  [c.269]


Описание сильно неравновесных состояний, а также вычисление кинетич. коэф. производятся с помощью кинетического уравнения Больцмана. Это ур-ние представляет собой интегродифференц. ур-ние для одночастичной ф-ции распределения (в квантовом случае — для одночастичной матрицы плотности, или статистич. оператора). Оно содержит члены двух типов. Одни описывают изменение ф-ции распределения при движении частиц во внеш. полях, другие — при столкновениях частиц. Именно столкновения приводят к возрастанию энтропии неравновесной системы, т, е. к релаксации. Замкнутое, т. е. не содержащее др. величин кинетич. ур-ние, невозможно получить в общем виде. При его выводе необходимо использовать малые параметры, имеющиеся в данной конкретной задаче. Важнейшим примером является кинетич. ур-ние, описывающее установление равновесия в газе за счёт столкновений между молекулами. Оно справедливо для достаточно разреженных газов, когда длина свободного пробега велика по сравнению с расстояниями между молекулами. Конкретный вид этого ур-ния зависит от эфф. сечения рассеяния молекул друг на друге. Если это сечение известно, ур-ние можно решать, разлагая искомую ф-цию по ортогональным полиномам. Таким способом можно вычислить кинетич. коэф. газа, исходя из известных законов взаимодействия между молекулами. Кинетич. ур-ние учитывает только парные столкновения между молекулами и описывает только первый неисчезающий член разложения этих коэф. по плотности газа. Удалось найти и более точное ур-ние, учитывающее также тройные столкновения, что позволило вычислить следующий член разложения.  [c.672]

Первое существенное замечание состоит в следующем. В классической теории кинетическое уравнение в пределе слабого взаимодействия представляет собой дифферешщальное уравнение относительно переменной р. Такая его форма обусловлена тем, что в случав слабого взаимодействия отклонение траекторий частиц при столкновениях очень мало. Как показано в разд. 11.6, предложенный Ландау вывод уравнения, пол вшего его имя, из уравнения Больцмана основан именно на этой идее. В квантовых системах не существует подобной эквивалентности между пределом слабого взаимодействия и пределом малого отклонения. В квантовой механике даже слабый потенциал взаимодействия может привести к очень сильной передаче импульса вследствие принципа нвопрвделвнности Гейзенберга. Квантовый аналог полного уравнения Больцмана по форме точно совпадает с уравнением (18.8.1) это уравнение известно под названием уравнения Юлинга — Уленбека. Единственное отличив от (18.8.1) состоит в том, что функция W связана с точным сечением рассеяния для упругих столкновений, соответствующих заданному межмолеку-лярному потенциалу. Сечение рассеяния (18.8.2) соответствует первому отличному от нуля приближению для точного сечения рассеяния, т. е. первому борновскому приближению ).  [c.251]



Статистическая механика неравновесных процессов Т.2 (2002) -- [ c.0 ]



ПОИСК



Больцмана уравнение

Квантовое кинетическое уравнени

Квантовые А-системы

Кинетическая системы

Кинетические уравнения

Кинетическое уравнение Больцмана

Кинетическое уравнение Больцмана квантовое

Система кинетических уравнений

Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте