Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дефектоскопия акустическая см оптическая

Па рис. 7.1 показана типичная схема теневого дефектоскопа с визуальным, изображением поля прошедшего излучения. Источник 1 УЗ-волн обычно достаточно большой, чтобы интерференционными явлениями в ближней зоне можно было пренебречь и считать с достаточной точностью поле излучения плоской однородной волной. С этой же целью его, наоборот, можно сделать малым, чтобы работать в дальней зоне, но в этом случае амплитуда поля суш,ественно снизится. УЗ-волны проходят через объект контроля 2. При наличии в объекте контроля дефекта однородность поля нарушается и позади дефекта образуется звуковая тень. Для повышения контрастности и четкости изображения прошедшие лучи обычно фокусируют ультразвуковой линзой 3. В фокальной плоскости линзы возникает акустический рельеф, т. е. определенное распределение интенсивности или амплитуды в плоскости поперечного сечения звукового пучка, соответствуюш,ее наблюдаемому дефекту. Чтобы сделать звуковой рельеф видимым, применяют различные устройства, называемые акустико-оптическими преоб-разователя.ми 4.  [c.392]


Сигнал тревоги от диафрагмы подается либо оптически (лампой или светодиодом), либо акустически (гудком). При этом у многих дефектоскопов можно заранее выбирать, будет ли этот сигнал тревоги действовать только во время нарушения предельного значения, с задержкой по времени или постоянно. В последнем случае сигнал тревоги прекращается только после квитирования, т. е. нажатия оператором соответствующей клавиши.  [c.215]

Распространение в промышленности изделий из композитных материалов, керамики и пластмасс потребует разработки низкочастотных и особовысокочастотных ультразвуковых дефектоскопов, акустических микроскопов, распространения микрофокусных аппаратов и на их основе рентгеновских микроскопов. Новые возможности открываются с созданием специальных волоконно-оптических преобразователей.  [c.479]

Для подтверждения критериальных характеристик прочности, ресурса и трещиностойкости проводят комплекс аттестационных испытаний на стандартных, унифицированных или специальных лабораторных образцах. В тех случаях, когда создаются новые и ответственные конструкции, проводят испытания моделей с доведением их до предельного состояния (развитие недопустимой деформации, вязкое или хрупкое разрушение, образование и развитие трещин). При этом широко используют методы и средства дефектоскопии — ультразвуковой, рентгеновской, оптической, акустической и акустоэмис-сионой, электромагнитной, термовизионной, голографической.  [c.102]

К неразрушающим методам контроля относят визуальный осмотр, простукивание, тепловой, оптический, электрический, радиоволновый, радиационный, контроль проникающими веществами, ультразвуковой контроль. Наибольшее распространение получил последний метод, основанный на измерении длины волны, амплитуды, частоты или скорости распространения ультразвуковых колебаний в клеевом шве. По способу выявления дефектов среди методов ультразвукового контроля выделяют теневой, эхо-импульсный, импедансный, резонансный, велосимметрический, метод акустической эмиссии. Для реализации этих методов разработана соответствующая аппаратура (см. раздел 8). При контроле клееных сотовых конструкций с сотами из алюминиевого сплава и обшивками из ПКМ целесообразно применять несколько методов [100]. Акустический метод, например, с использованием импедансных дефектоскопов ИД-91М и АД-42И с частотной и амплитудной регистрацией колебаний соответственно эффективен для обнаружения отслоений сотового заполнителя от обшивки, а радиографический — для выявления повреждений сотового заполнителя и обшивки, а также для фиксирования мест заливки в соты пасты.  [c.537]


На рис. 3-32 изображена принципиальная схема такого дефектоскопа. С нижней стороны исследуемого объекта 1 устаиавливается пьезоэлектрическая пластинка 3, излучающая ультразвуковые колебания. Часть ультразвуковых волн отражается от границы дефекта 2 и дальше не проходит. Оставшиеся ультразвуковые волны при помощи акустической линзы 4 проектируются на поверхность жидкости 5. На поверхности жидкости при этом возникает рельефное звуковое изображение, которое при помощи оптической системы преобразуется в видимое изображение и проектируется на экран 9. Со стороны стрелки А мы можем наблюдать изображение дефекта. Применяя высокочастотные звуковые колебания, например порядка нескольких десятков миллионов в секунду, мы получим на экране изображения мельчайших микроскопических дефектов, находящихся внутри контролируемого объекта. Для наблюдения таких мельчайших дефектов, по размеру соизмеримых с длиной ультразвуковой волны (что составляет несколько микрон), можно применить обычный  [c.113]

Поэтому почти все эхо-импульсные дефектоскопы снабжены более или менее комфортабельными вентильными схемами (рис. 10.18). Видеовыход усилителя соединяется со входом комг параторной схемы. Если амплитуда эхо-импульса превысит некоторое настраиваемое или постоянное значение для данного типа прибора, подаваемое на сравнительный вход компаратора, то вырабатывается логический сигнал, который соединяется в некоторой логической схеме с временнбй областью ожидания и в случае обнаружения дефекта подает оптический или акустический (звуковой) сигнал тревоги.  [c.211]

Оптическая томография применяется для визуализации акустического поля ультразвуковых излучателей 1101], которые широко используются в неразрушающей дефектоскопии и медицине. В даннсп работе различные проекции акустического поля получаются за счет вращения излучателя в плоскости верхней грани звуко-провода вокруг заданной оси. Зондирующий лазерный пучок света, ось которого перпендикулярна этой оси, испытывает дифракцию на исследуемом акустическом поле. Проекция акустического поля, как >1 Само поле, является комплексной функцией. Амплитуда проекции пропорциональна параметру Рамана—Ната, который в свою очередь определяется из интенсивности дифрагированною света. Поэтому в [101] предлагается амплитуду проекционных данных извлекать из распределения интенсивности света в изображении нулевого порядка дифракции. Однако фазу проекции акустическо- го псля получить из этих измерений нельзя. Для ее восстановления в работе используются различные итерационные алгоритмы типа -алгоритма Гершберга. После реконструкции фазы проекции про-  [c.103]


Смотреть страницы где упоминается термин Дефектоскопия акустическая см оптическая : [c.325]    [c.216]    [c.389]    [c.83]    [c.167]    [c.295]    [c.781]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.339 ]



ПОИСК



Акустическая дефектоскопия

Дефектоскопия

Дефектоскопы

Оптическая дефектоскопия



© 2025 Mash-xxl.info Реклама на сайте