Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия биметаллических систем в вод

При рассмотрении контактной коррозии биметаллических систем мы обычно должны интересоваться не только величиной тока в системе, но и степенью усиления коррозии наименее благородного металла. Если прирост скорости коррозии основного металла за счет контакта не столь велик, можно такой контакт допустить. Иными словами, имеется необходимость в количественной оценке изменения скорости коррозии контактирующих металлов, для этого предложен метод графического определения скорости коррозии контактирующих металлов (рис. 7).  [c.39]


Отличительной особенностью контактной коррозии в атмосферных условиях является протекание процесса на поверхности электродов, лежащих в одной плоскости и покрытых тонким слоем электролита. Ввиду небольшой дальности действия контакта в этих условиях даже при наличии в системе большого числа металлов расчеты можно вести для биметаллической системы.  [c.93]

На рис. 21,6 представлена коррозионная диаграмма биметаллической системы для случаев, когда корродирующий металл контактирует с металлом, имеющим более отрицательный потенциал (например, с магнием), В отсутствие контакта скорость коррозии определяется кинетикой катодного и анодного процессов (кривые К и А . При компромиссном потенциале ф скорость процес-  [c.61]

В замкнутых системах в зависимости от агрессивности среды концентрация силиката должна быть повышена в 4—5 раз. Обработка воды силикатами приостанавливает и коррозию стали, когда она находится в контакте с другими металлами. Силикаты дают определенный эффект при защите биметаллической системы из алюминия и меди применение силикатов совместно с хроматами улучшает эту защиту. Оптимальной концентрацией считается 40 мг/л Na2Si03 и 500 мг/л Ыэ2Сг204. Добавки в электролит только силиката не прекращают коррозию. Добавки хромата в количестве 1000 мг/л также малоэффективны. Детали, покрытые оловом, судя по электрохимическим измерениям, должны также хорошо защищаться от коррозии силикатами [46].  [c.260]

Защита охладительных систем двигателей внутреннего сгорания (дизели, автомобили) сопряжена со значительными трудностями по следующим причинам системы содержат ряд разнородных в электрохимическом отношении металлов и сплавов (сталь, цинк, латунь, припой, чугун, алюминий) имеют много щелевых зазоров и застойных мест работают при высоких температурах и подвергаются часто эрозионному воздействию и кавитации. Все эти факторы сильно затрудняют подбор ингибиторов. Не представляет труда, как было показано выше, защитить от коррозии сталь или чугун, а также биметаллические системы сталь — медь, однако при наличии в системе алюминия, эксплуатация которого возможна лишь в узком интервале pH, применение щелочных реагентов, хорошо защищающих черные металлы, исключается. Наличие латуни также вносит свои трудности, поскольку медь со многими органическими соединениями, в особенности с аминами, образует легко растворимые комплексные соединения. Особенно трудно защитить от коррозии припой (Pb/Sn — 70/30) так, нитрит натрия, который является хорошим ингибитором для стали, разрушает припой, т. е. самостоятельно применяться не может. Положение осложняется еще и тем, что наличие в системе разнородных в электрохимическом отношении металлов приводит к катодной поляризации одних металлов и анодной поляризации других. Поэтому при определенном общем потенциале, который устанавливается в "системе или на отдельных электродах, некоторые ингибиторы, которые обычно в присутствии одного металла не восстанавливаются, могут восстанавливаться, теряя свои защитные свойства. Этот процесс, например для хроматов, усиливается при наличии в воде органических соединений (уплотнителей органического происхож-  [c.269]


Многие из этих композиций, содержащие соединения бора, позволяют защищать от коррозии охладительные системы двигателей, включающие чугун, сталь, латунь, припой, цинк, алюминиевые сплавы и др. При этом защитные свойства компонентов аддитивны, а иногда проявляется и синергетический эффект. В частности, высокие защитные свойства имеет смесь, состоящая из четырех частей буры и одной части хромата натрия. Она хорошо защищает от коррозии такие биметаллические контакты, как алюминий — медь и сталь — цинк, а также тройную систему сталь — припой — медь (табл. 8,5). Такая комбинация ингибиторов могла бы применяться и в антифризах, если бы хромат не восстанавливался эти-ленгликолем. Для систем, охлаждающихся водой, она применяется с успехом. По данным [166], высокие защитные свойства обнаружила при испытаниях смесь из 15% буры и 0,5% хромата натрия.  [c.272]

В целях борьбы с коррозией оборудования со стороны оборотной воды проводится ее фосфатирование, позволяющее снизить скорость коррозии в системе водоблоков до 0,05 мм/год. На всех установках МЭА очистки газов намечается смонтировать узлы вакуумной разгонки МЭА. Для уменьшения коррозии в катализаторном производстве применяются биметаллические материалы на основе сталей типа XI8.  [c.49]

М, D а г г i п, Хроматные ингибиторы коррозии в биметаллических системах, Ind. Eng. hem,, 37, № 8, 741—748 (1945),  [c.178]

При нарушении сплошности покрытия образуется биметаллическая система алюминиевое покрытие — сталь. Смешанный электродный потенциал этой системы определяется кинетикой и соотношением скоростей анодной и катодной реакций, которые протекают преимущественно на покрытии анодная реакция ионизации алюминия) и на поверхности стальной трубы (катодная реакция восстановления растворенного кислорода или выделения водорода). При температуре 20ОС первоначально электродный потенциал биметаллической системы устанавливается вблизи потенциала питтингообразования алюминиевого покрытия. При потенциале питтингообразования анодная реакция ионизации алюминия поддерживается сопряженной катодной реакцией восстановления кислорода. С увеличением количества питтингов и соответственно площади локального нарушения пассивного состояния покрытия скорость катодной реакции, ограниченная по значению предельным диффузионным током, может оказаться недостаточной для поддержания процесса ионизации алюминия в кинетической области при потенциале питтингообразования. Это приводит к смещению электродного потенциала к более отрицательным значениям. Причем такое смещение происходит тем раньше, чем выше концентрация хлор-ионов. Аналогичное влияние на формирование стационарного потенциала биметаллической системы оказывает повышение температуры. С повышением температуры и концентрации хлор-ионов также наблюдается увеличение смещения в отрицательную сторону электродного потенциала биметаллической системы по сравнению с потенциалом коррозии железа. Наблюдения показали, что с увеличением смещения в отрицательную сторону электродного потенциала биметаллической системы относительно потенциалов коррозии железа степень коррозии участков образцов с нарушением сплошности покрытия уменьшается. За год испытаний при концентрациях хлор-ионов 0,003—0,07 н при температурах 60-80ОС коррозия железа на участках нарушения сплошности покрытия вообще отсутствовала, тогда как при 20°С в подобных испытаниях наблюдался слабый налет ржавчины.  [c.64]

В настоящее время на двух заводах СК, получающих диметилдиоксан из изобутилена и формальдегида, эксплуатируются биметаллические реакторы с медными трубами. Рабочий агрегат состоит из двух последовательно соединенных реакторов. Материальные трубопроводы, соединяющие реакторы, и другие сопря-- женные с этими аппаратами коммуникации ра заводах изготовляют из меди или стали Х17Н13М2Т. Последняя меньше изнашивается — возможно потому, что лучше сопротивляется эрозии. За коррозионным состоянием этой системы ведется постоянный контроль путем поляриметрических определений содержания соединений меди и других металлов в перерабатываемых жидкостях. Наряду с косвенными методами определения коррозии производятся частые осмотры аппаратов, а также испытания образцов металлов, установленных в действующих реакторах. В табл. 10.10 приведены результаты испытаний образцов металлов в действующих реакторах на Куйбышевском заводе СК. Из приведенных данных видно, что медь в реакторах в среднем корродирует со скоростью  [c.225]


В качестве датчиков коррозионного мониторинга использовались стандартные неполяризующиеся медно-сульфатные электроды типа ЭНЕС, электроды длительного действия биметаллические (ЭДБ), датчики скорости коррозии, наводороживания и температуры. Результаты эксплуатации первой системы изложены в работе [I].  [c.86]


Смотреть страницы где упоминается термин Коррозия биметаллических систем в вод : [c.197]    [c.178]    [c.393]    [c.66]   
Ингибиторы коррозии (1977) -- [ c.275 ]



ПОИСК



Л биметаллическое



© 2025 Mash-xxl.info Реклама на сайте