Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания вынужденные произвольным числом степеней

Вынужденные колебания. Решение задачи о вынужденных колебаниях в диссипативных системах с конечным числом степеней свободы может быть получено с использованием нормальных координат недиссипативной системы. В случае, если матрица В является линейной комбинацией матриц А и С, это решение будет точным. При произвольной матрице В придется пренебречь, как указано выше, недиагональными элементами преобразованной матрицы демпфирования.  [c.326]


Как уже говорилось в предыдущем параграфе, демпфирование становится исключительно важным в том случае, когда периодические возмущения имеют частоту, близкую к одной из частот собственных колебаний системы со многими степенями свободы. Вопрос об установившихся вынужденных колебаниях систем с двумя степенями свободы исследовался в п. 3.8 с помощью метода передаточных функций. Этот подход может быть легко распространен на системы с п степенями свободы, при этом основные соотношения [см. выражения (3.51) и (3.52) J сохраняют свою форму неизменной. Однако решение в рамках указанного подхода требует обращения матрицы порядка п X п, содержащей комплексные числа. Если собственные значения и собственные векторы системы предварительно были определены тем или иным способом, подходу с использованием передаточных функций лучше предпочесть метод нормальных форм колебаний. Зная частоту изменения возмущений и собственную частоту колебаний системы, можно непосредственным путем определить динамические перемещения по формам колебаний, чьи частоты близки к частоте возмущения. Ниже, будут рассмотрены возмущения, имеющие вид либо одной гармонической функции, либо произвольного вида периодических функций, при этом будет предполагаться, что система имеет либо пропорциональное демпфирование, либо демпфирование по формам колебаний, аналогичное тому, о котором говорилось в предыдущем параграфе.  [c.306]

Итак, в прикладных проблемах линейные задачи теории стоячих волн представляют основной интерес. Тем не менее на ряд вопросов линейная теория ответить не может. Например, при настройке системы управления важно знать зависимость частоты колебаний от амплитуды. Иногда полезно знать (с высокой степенью точности) структуру волновой поверхности и т. д. Поэтому нелинейная теория представляет определенный интерес для практики. Однако, как мне кажется, наибольший интерес нелинейная теория стоячих волн имеет для математика. В теории установившихся волн проблема существования решений довольно элементарна. В теории стоячих волн дело обстоит значительно сложнее. Первая работа в этой области была сделана Я. И. Секерж-Зеньковичем (1957), который предложил процедуру последовательных приближений, позволяющую рассчитать нелинейные стоячие волны в безграничной жидкости. Эта задача дает ответ о характере нелинейных волн, возникающих в сосуде, ограниченном вертикальными стенками, в предположении, что глубина сосуда бесконечна. В начале пятидесятых годов ту же проблему для сосудов произвольной формы изучал Н. Н. Моисеев. Колеблющаяся жидкость рассматривалась как некоторая система Ляпунова счетного числа степеней свободы. Была развита теория, в рамках которой удалось рассмотреть как свободные, так и вынужденные колебания. Была построена полная аналогия с колебательной системой Ляпунова конечного числа степеней свободы и показано, что для того, чтобы провести все вычисления, достаточно уметь решать соответствующую линейную задачу. Разумеется, развитая теория позволяла изучать только такие волновые процессы, которые близки к тем, которые описываются линейной теорией. (Полное изложение этой теории нелинейных волн можно найти в монографии Н. Н. Моисеева и А. А. Петрова, 1965.)  [c.64]



Смотреть страницы где упоминается термин Колебания вынужденные произвольным числом степеней : [c.439]    [c.248]   
Курс теоретической механики. Т.2 (1983) -- [ c.0 ]



ПОИСК



Колебания вынужденные

Произвольный вид

Число колебаний



© 2025 Mash-xxl.info Реклама на сайте